The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 se...The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 sets of orthogonal-test schemes have been defined on the basis of 4 parameters,namely,the blade number,blade outlet angle,impeller outlet diameter,and impeller outlet width.Such analysis has been used to determine the influence of each index parameter on the pump working efficiency and identify a set of optimal combinations of such parameters.The internalflowfield in the centrifugal pump has been simulated by using the PumLinx software.These numerical results have shown that,compared with the prototype pump,the outlet pressure and shaft power of the optimized pump can be significantly reduced,and the pump working efficiency can be improved by 5.59%.In the present study,some arguments are also provided to demonstrate that,with respect to other optimization methods,the orthogonal test approach is more convenient,and requires less test times.展开更多
An impeller is the most important component affecting the performance of centrifugal fans. The flow in the impeller is very complicated, and the 3\|D viscous flow is difficult to simulate numerically. This paper prese...An impeller is the most important component affecting the performance of centrifugal fans. The flow in the impeller is very complicated, and the 3\|D viscous flow is difficult to simulate numerically. This paper presents a numerical method for simulating the flow in practical commercial impellers. The predictions are compared with experimentally measured fan performance results. The predicted total pressure and efficiency for two fan models, whose optimum designs were determined by this method, agree well with the measured data for the design flow rate. The results show that the aerodynamic and noise levels for these two models are excellent. The paper also presents several new ideas about the shape of the front plate and the blade flow pattern to improve the flow in an impeller channel. The practical simulation methodology and results developed here will be very useful to the fan industry in the future.展开更多
Increasing demand for downsizing of engines to improve CO2 emissions has resulted in renewed efforts to improve the efficiency and expend the stable operating range of the centrifugal compressors used in petro-chemica...Increasing demand for downsizing of engines to improve CO2 emissions has resulted in renewed efforts to improve the efficiency and expend the stable operating range of the centrifugal compressors used in petro-chemical equipment and turbochargers. The losses in these compressors are dominated by tip clearance flow. In this paper, the tip clearance flow in the subsonic impeller is numerically investigated. The nature of the tip clearance in inducer, axial to radial bend and exducer are studied in detail at design and off-design conditions by examining the detailed flow field through the clearance and the interaction of the clearance flow with the shear effect with the endwalls. The correlation between blade loading and span wise geometry and clearance flow at different locations are presented.展开更多
In this study, we attempt the analysis of the passage flow in the centrifugal impeller using FEM with/without the turbulence model, and compare this result with the experimental result. The turbulence model is the low...In this study, we attempt the analysis of the passage flow in the centrifugal impeller using FEM with/without the turbulence model, and compare this result with the experimental result. The turbulence model is the low Reynolds k-ε model proposed by Chien. We use the GSMAC method for the Reynolds averaged Navier-Stokes equstions, the Euler explicit method for the transport equations of the turbulent kinetic energy and the dissipation rate. All equations are discretized by the Galerkin’s method. At the midpassage of the centrifugal impeller the passagewise velocity component tends to increase in the pressure-to-suction direction, and the other component toward the pressure surface tends to be large in the region of the middle blade-to-blade to the hub side. The tip leakages appear around the region of the middle blade-to-blade near the casing together with the secondary flow toward the suction surface. These phenomena correspond with the experimental result, qualitatively.展开更多
基金supported by the Anhui Province University Discipline(Professional)Top Talent Academic Funding Project(No.gxbjZD2021076)This project is supported by the Key Project of Natural Science Research in Colleges and Universities of Anhui Province(No.KJ2021A1026)This project is supported by the Key Project of Natural Science Foundation of Chaohu University(No.XLZ-201902).
文摘The main structural parameters of the IR100-80-100A type chemical centrifugal pump have been optimized by means of an orthogonal test approach.The centrifugal pump has been modeled using the CFturbo software,and 16 sets of orthogonal-test schemes have been defined on the basis of 4 parameters,namely,the blade number,blade outlet angle,impeller outlet diameter,and impeller outlet width.Such analysis has been used to determine the influence of each index parameter on the pump working efficiency and identify a set of optimal combinations of such parameters.The internalflowfield in the centrifugal pump has been simulated by using the PumLinx software.These numerical results have shown that,compared with the prototype pump,the outlet pressure and shaft power of the optimized pump can be significantly reduced,and the pump working efficiency can be improved by 5.59%.In the present study,some arguments are also provided to demonstrate that,with respect to other optimization methods,the orthogonal test approach is more convenient,and requires less test times.
文摘An impeller is the most important component affecting the performance of centrifugal fans. The flow in the impeller is very complicated, and the 3\|D viscous flow is difficult to simulate numerically. This paper presents a numerical method for simulating the flow in practical commercial impellers. The predictions are compared with experimentally measured fan performance results. The predicted total pressure and efficiency for two fan models, whose optimum designs were determined by this method, agree well with the measured data for the design flow rate. The results show that the aerodynamic and noise levels for these two models are excellent. The paper also presents several new ideas about the shape of the front plate and the blade flow pattern to improve the flow in an impeller channel. The practical simulation methodology and results developed here will be very useful to the fan industry in the future.
基金supported by the National Natural Science Foundation of China (Grant No. 51276125)the National Basic Research Program of China ("973" Project) (Grant No. 2012CB720101)
文摘Increasing demand for downsizing of engines to improve CO2 emissions has resulted in renewed efforts to improve the efficiency and expend the stable operating range of the centrifugal compressors used in petro-chemical equipment and turbochargers. The losses in these compressors are dominated by tip clearance flow. In this paper, the tip clearance flow in the subsonic impeller is numerically investigated. The nature of the tip clearance in inducer, axial to radial bend and exducer are studied in detail at design and off-design conditions by examining the detailed flow field through the clearance and the interaction of the clearance flow with the shear effect with the endwalls. The correlation between blade loading and span wise geometry and clearance flow at different locations are presented.
文摘In this study, we attempt the analysis of the passage flow in the centrifugal impeller using FEM with/without the turbulence model, and compare this result with the experimental result. The turbulence model is the low Reynolds k-ε model proposed by Chien. We use the GSMAC method for the Reynolds averaged Navier-Stokes equstions, the Euler explicit method for the transport equations of the turbulent kinetic energy and the dissipation rate. All equations are discretized by the Galerkin’s method. At the midpassage of the centrifugal impeller the passagewise velocity component tends to increase in the pressure-to-suction direction, and the other component toward the pressure surface tends to be large in the region of the middle blade-to-blade to the hub side. The tip leakages appear around the region of the middle blade-to-blade near the casing together with the secondary flow toward the suction surface. These phenomena correspond with the experimental result, qualitatively.