期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Generalized Inverse Eigenvalue Problem for Centrohermitian Matrices
1
作者 刘仲云 谭艳祥 田兆录 《Journal of Shanghai University(English Edition)》 CAS 2004年第4期448-454,共7页
In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of co... In this paper we first consider the existence and the general form of solution to the following generalized inverse eigenvalue problem(GIEP): given a set of n-dimension complex vectors {x j}m j=1 and a set of complex numbers {λ j}m j=1, find two n×n centrohermitian matrices A,B such that {x j}m j=1 and {λ j}m j=1 are the generalized eigenvectors and generalized eigenvalues of Ax=λBx, respectively. We then discuss the optimal approximation problem for the GIEP. More concretely, given two arbitrary matrices, , ∈C n×n, we find two matrices A and B such that the matrix (A*,B*) is closest to (,) in the Frobenius norm, where the matrix (A*,B*) is the solution to the GIEP. We show that the expression of the solution of the optimal approximation is unique and derive the expression for it. 展开更多
关键词 centrohermitian matrix generalized inverse eigenvalue problem optimal approximation.
下载PDF
关于中心对称矩阵的矩阵与矩阵乘积的计算 被引量:2
2
作者 谭艳祥 田兆禄 刘仲云 《长沙交通学院学报》 2005年第3期1-5,共5页
给出了计算矩阵与矩阵乘积W=AP的几种算法(其中A或P为中心对称矩阵或中心Hermitian矩阵),与计算矩阵与矩阵乘积的传统算法以及Strassen算法相比较,计算量约节省一半、所需内存可节省一半。另外,当A或P为斜中心对称矩阵时也有相似的结论。
关键词 中心对称(Hermitian)矩阵 斜中心对称矩阵 Strassen算法
下载PDF
几个结构矩阵乘积的快速算法
3
作者 曹寒冬 胡振华 《湖南城市学院学报(自然科学版)》 CAS 2008年第3期42-43,共2页
运用广义中心对称矩阵和广义中心Hermitian矩阵的约化性质得到了计算此类矩阵乘积的快速算法.此算法和传统算法相比,大约是传统算法计算量的一半.
关键词 广义中心对称矩阵 广义中心Hemitian矩阵 矩阵乘积
下载PDF
几个结构矩阵乘积的Strassen算法
4
作者 曹寒冬 曹文胜 《五邑大学学报(自然科学版)》 CAS 2008年第4期28-31,共4页
运用广义中心对称矩阵和广义中心Hermitian矩阵的约化性质得到了计算此类矩阵乘积的Strassen算法.此算法和传统算法相比,大约是传统算法计算量的一半.
关键词 广义中心对称矩阵 广义中心Hermitian矩阵 矩阵乘积 Strassen算法
下载PDF
THE RECONSTRUCTION OF AN HERMITIAN TOEPLITZ MATRIX WITH PRESCRIBED EIGENPAIRS 被引量:1
5
作者 Zhongyun LIU Lu CHEN Yulin ZHANG 《Journal of Systems Science & Complexity》 SCIE EI CSCD 2010年第5期961-970,共10页
This paper concerns the reconstruction of an hermitian Toeplitz matrix with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformat... This paper concerns the reconstruction of an hermitian Toeplitz matrix with prescribed eigenpairs. Based on the fact that every centrohermitian matrix can be reduced to a real matrix by a simple similarity transformation, the authors first consider the eigenstructure of hermitian Toeplitz matrices and then discuss a related reconstruction problem. The authors show that the dimension of the subspace of hermitian Toeplitz matrices with two given eigenvectors is at least two and independent of the size of the matrix, and the solution of the reconstruction problem of an hermitian Toeplitz matrix with two given eigenpairs is unique. 展开更多
关键词 centrohermitian matrix hermitian Toeplitz matrix inverse eigenproblems reconstruction.
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部