期刊文献+
共找到425篇文章
< 1 2 22 >
每页显示 20 50 100
Evaluation of Stress Intensity Factors Subjected to Arbitrarily Distributed Tractions on Crack Surfaces 被引量:3
1
作者 刘钧玉 林皋 《China Ocean Engineering》 SCIE EI 2007年第2期293-303,共11页
The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress... The stress intensity factors (SIF) considering arbitrarily distributed surface tractions are evaluated based on the sealed boundary finite element method (SBFEM). The semi-analytical solving process for the stress intensity factors including the effects of surface tractions is presented. Provided are the numerical examples for the evaluation of mode I and Ⅱ stress intensity factors with linear and non-linear distributing forces loaded on the crack surfaces. The crack problems of anisotropy and bimaterial interface are also studied and the stress intensity factors of single-edge-cracked orthotropic material and bi-material interface problems with surface tractions are calculated. Comparisons with the analytical solutions show that the proposed approach is effective and possesses high accuracy. 展开更多
关键词 stress intensity factor scaled boundary finite element method surface tractions anisotropic materials bimaterial interface
下载PDF
Closed form solution of stress intensity factors for cracks emanating from surface semi-spherical cavity in finite body with energy release rate method
2
作者 Hualiang WAN Qizhi WANG Xing ZHANG 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI CSCD 2016年第12期1689-1706,共18页
In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived us... In this paper, a new semi-analytical and semi-engineering method of the closed form solution of stress intensity factors (SIFs) of cracks emanating from a surface semi-spherical cavity in a finite body is derived using the energy release rate theory. A mode of crack opening displacements of a normal slice is established, and the normal slice relevant functions are introduced. The proposed method is both effective and accurate for the problem of three-dimensional cracks emanating from a surface cavity. A series of useful results of SIFs are obtained. 展开更多
关键词 stress intensity factor (SIF) closed form solution surface cavity three-dimensional crack normal slice
下载PDF
Weight Function Method for Stress Intensity Factor of Internal Surface Semi-elliptical Crack in Elliptical Holes
3
作者 XIE Wei HUANG Qi-qing 《International Journal of Plant Engineering and Management》 2007年第2期93-100,共8页
The hatches for inspecting are usually designed with elliptical holes in airplane structures, so computation of the stress intensity factor of three dimensional crack at elliptical holes is pivotal for damage toleranc... The hatches for inspecting are usually designed with elliptical holes in airplane structures, so computation of the stress intensity factor of three dimensional crack at elliptical holes is pivotal for damage tolerance analysis of these structures. In this paper, weight function is derived for a two dimensional through cracks at elliptical holes by applying a compounding method. Stress intensity factor formulas for an internal surface semi-elliptical crack in elliptical holes are obtained wing the three dimensional weight function method. Stress intensity factors for an internal surface semi-elliptical crack in elliptical holes under remote tension are computed. At the same time, research on how radius of curvature for elliptical holes affect stress intensity factors was conducted. Stress intensity factors decrease when radius of curvature increases. Some results and conclusions which are of practical value are given. 展开更多
关键词 compounding method internal surface semi-elliptical crack stress intensity factor weight function elliptical holes
下载PDF
The dynamic stress intensity factor analysis of adhesively bonded material interface crack with damage under shear loading 被引量:1
4
作者 蔡艳红 陈浩然 +2 位作者 唐立强 闫澄 江莞 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2008年第11期1517-1526,共10页
This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the i... This paper studies the dynamic stress intensity factor (DSIF) at the interface in an adhesive joint under shear loading. Material damage is considered. By introducing the dislocation density function and using the integral transform, the problem is reduced to algebraic equations and can be solved with the collocation dots method in the Laplace domain. Time response of DSIF is calculated with the inverse Laplace integral transform. The results show that the mode Ⅱ DSIF increases with the shear relaxation parameter, shear module and Poisson ratio, while decreases with the swell relaxation parameter. Damage shielding only occurs at the initial stage of crack propagation. The singular index of crack tip is -0.5 and independent on the material parameters, damage conditions of materials, and time. The oscillatory index is controlled by viscoelastic material parameters. 展开更多
关键词 dynamic stress intensity factor interface crack adhesively bonded material DAMAGE singular integral eouation
下载PDF
Evaluation of stress intensity factors for bi-material interface cracks using displacement jump methods 被引量:3
5
作者 K. C. Nehar B. E. Hachi +1 位作者 F. Cazes M. Haboussi 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2017年第6期1051-1064,共14页
The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to an... The aim of the present work is to investigate the numerical modeling of interfacial cracks that may appear at the interface between two isotropic elastic materials. The extended finite element method is employed to analyze brittle and bi-material interfacial fatigue crack growth by computing the mixed mode stress intensity factors(SIF). Three different approaches are introduced to compute the SIFs. In the first one, mixed mode SIF is deduced from the computation of the contour integral as per the classical J-integral method,whereas a displacement method is used to evaluate the SIF by using either one or two displacement jumps located along the crack path in the second and third approaches. The displacement jump method is rather classical for mono-materials,but has to our knowledge not been used up to now for a bimaterial. Hence, use of displacement jump for characterizing bi-material cracks constitutes the main contribution of the present study. Several benchmark tests including parametric studies are performed to show the effectiveness of these computational methodologies for SIF considering static and fatigue problems of bi-material structures. It is found that results based on the displacement jump methods are in a very good agreement with those of exact solutions, such as for the J-integral method, but with a larger domain of applicability and a better numerical efficiency(less time consuming and less spurious boundary effect). 展开更多
关键词 Bi-material interface crack Mixed mode stress intensity factor Displacement jump X-FEM Fatigue crack growth
下载PDF
Simulation Research on Stress Intensity Factors of Different Crack Aspect Ratios on Hollow Axles 被引量:2
6
作者 ZHOU Suxia XIE Jilong 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2009年第5期766-771,共6页
Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can... Because of the wicked service environment of the high speed train, it is possible that the hollow axle of the train may encounter the foreign object damage and form a sharp notch. Under the fatigue loading a crack can initiate from the notch and propagate to failure. It is noted that the stress intensity factor is the control parameter of the crack propagating, for the purpose of getting the more exact propagation characteristics, the stress intensity factor is studied mainly. The service loads of hollow axles are defined, and the stress distribution of hollow axles is obtained according to the load spectrum. The semi-ellipse crack configuration is defined with three parameters: the aspect ratio, the relative depth and the relative location along the crack front. Quarter point 20-node isoparametric degenerate singular elements are used for the region near the crack tip. The finite element model of crack extension of hollow axle is created, and the crack front is dispersed which can realize orthogonal extension. Based on this the stress intensity factors of crack front were calculated, and the distribution rules of the stress intensity factors of different initial crack shapes are obtained. The conclusions are compared with that of the analytic method and they agree with each other very well, and the calculating results show that there is a close relationship between the stress intensity factor and the initial crack shape. For a round crack the stress intensity factor at the surface point increases faster than the one at the center point with the crock propagation. However, for a narrow crack, the results are in contrast with that of a round one. So, all the cracks with different shapes propagate toward to a similar shape, and they grow at this shape to end. The study may contribute to the crack propagate characteristics research. 展开更多
关键词 hollow axle surface crack propagation stress intensity factor finite element
下载PDF
SEMI-WEIGHT FUNCTION METHOD ON COMPUTATION OF STRESS INTENSITY FACTORS IN DISSIMILAR MATERIALS 被引量:2
7
作者 马开平 柳春图 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第11期1241-1248,共8页
Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of contin... Semi_weight function method is developed to solve the plane problem of two bonded dissimilar materials containing a crack along the bond. From equilibrium equation, stress and strain relationship, conditions of continuity across interface and free crack surface, the stress and displacement fields were obtained. The eigenvalue of these fields is lambda. Semi_weight functions were obtained as virtual displacement and stress fields with eigenvalue?_lambda. Integral expression of fracture parameters, K Ⅰ and K Ⅱ, were obtained from reciprocal work theorem with semi_weight functions and approximate displacement and stress values on any integral path around crack tip. The calculation results of applications show that the semi_weight function method is a simple, convenient and high precision calculation method. 展开更多
关键词 dissimilar material interface crack stress intensity factor semi-weight function method plane fracture problem
下载PDF
Analysis of stress intensity factor in orthotropic bi-material mixed interface crack 被引量:2
8
作者 赵文彬 张雪霞 +1 位作者 崔小朝 杨维阳 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1271-1292,共22页
Adopting the complex function approach, the paper studies the stress intensity factor in orthotropic bi-material interface cracks under mixed loads. With con- sideration of the boundary conditions, a new stress functi... Adopting the complex function approach, the paper studies the stress intensity factor in orthotropic bi-material interface cracks under mixed loads. With con- sideration of the boundary conditions, a new stress function is introduced to transform the problem of bi-material interface crack into a boundary value problem of partial dif- ferential equations. Two sets of non-homogeneous linear equations with 16 unknowns are constructed. By solving the equations, the expressions for the real bi-material elastic constant εt and the real stress singularity exponents λt are obtained with the bi-material engineering parameters satisfying certain conditions. By the uniqueness theorem of limit, undetermined coefficients are determined, and thus the bi-material stress intensity factor in mixed cracks is obtained. The bi-material stress intensity factor characterizes features of mixed cracks. When orthotropic bi-materials are of the same material, the degenerate solution to the stress intensity factor in mixed bi-material interface cracks is in complete agreement with the present classic conclusion. The relationship between the bi-material stress intensity factor and the ratio of bi-material shear modulus and the relationship be- tween the bi-material stress intensity factor and the ratio of bi-material Young's modulus are given in the numerical analysis. 展开更多
关键词 interface crack stress intensity factor BI-MATERIAL ORTHOTROPIC complexvariable method
下载PDF
SCATTERING OF SH-WAVE BY CRACKS ORIGINATING AT AN ELLIPTIC HOLE AND DYNAMIC STRESS INTENSITY FACTOR
9
作者 刘殿魁 陈志刚 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2004年第9期1047-1056,共10页
The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an... The method of complex function and the method of Green's function are used to investigate the problem of SH-wave scattering by radial cracks of any limited length along the radius originating at the boundary of an elliptical hole, and the solution of dynamic stress intensity factor at the crack tip was given. A Green's function was constructed for the problem, which is a basic solution of displacement field for an elastic half space containing a half elliptical gap impacted by anti-plane harmonic linear source force at any point of its horizontal boundary. With division of a crack technique, a series of integral equations can be established on the conditions of continuity and the solution of dynamic stress intensity factor can be obtained. The influence of an elliptical hole on the dynamic stress intensity factor at the crack tip was discussed. 展开更多
关键词 Fracture mechanics Green's function Integral equations SCATTERING stress intensity factors surface waves crack tip Elastic half space Elliptic hole Griffith linear crack SH wave
下载PDF
Closed-Form Solutions of Stress Intensity Factors for Semi-elliptical Surface Cracks in a Cylindrical Bar Under Pure Tension
10
作者 M.K.Ramezani S.Ramesh +1 位作者 J.Purbolaksono R.Das 《Acta Mechanica Solida Sinica》 SCIE EI CSCD 2022年第2期344-356,共13页
In this work,the stress intensity factors(SIFs)for a wide range of semi-elliptical surface cracks with different inclination angles in a cylindrical bar subjected to pure tension were investigated numerically.The main... In this work,the stress intensity factors(SIFs)for a wide range of semi-elliptical surface cracks with different inclination angles in a cylindrical bar subjected to pure tension were investigated numerically.The main parameters considered to evaluate the SIFs were the crack size ratio(a/d),the crack aspect ratio(a/c),and the crack inclination angle(0).The dual-boundary element met hod implemented in software BEASY was used to compute the SIF values for cracks.Furt her more,the general closed-form solutions were proposed to evaluate the corresponding SIFs for Mode I,Mode II and Mode III types of fracture through curve fitting approaches.These solutions can provide accurate and reliable values of stress intensity factors for a crack on a cylindrical bar under pure tension in a rapid way compared to those obtained using computational models.In addition,these results can be used as inputs for failure studies and life evaluations of cracked cylinder under working conditions. 展开更多
关键词 stress intensity factor surface crack Solid cylinder Closed-form solution Dual-boundary element method
原文传递
THERMAL FRACTURE OF FUNCTIONALLY GRADED PLATE WITH PARALLEL SURFACE CRACKS 被引量:1
11
作者 Yuezhong Feng Zhihe Jin 《Acta Mechanica Solida Sinica》 SCIE EI 2009年第5期453-464,共12页
This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors ... This work examines the fracture behavior of a functionally graded material (FGM) plate containing parallel surface cracks with alternating lengths subjected to a thermal shock. The thermal stress intensity factors (TSIFs) at the tips of long and short cracks are calculated using a singular integral equation technique. The critical thermal shock △Tc that causes crack initiation is calculated using a stress intensity factor criterion. Numerical examples of TSIFs and △Tc for an Al2O3/Si3N4 FGM plate are presented to illustrate the effects of thermal property gradation, crack spacing and crack length ratio on the TSIFs and △Tc. It is found that for a given crack length ratio, the TSIFs at the tips of both long and short cracks can be reduced significantly and △Tc can be enhanced by introducing appropriate material gradation. The TSIFs also decrease dramatically with a decrease in crack spacing. The TSIF at the tips of short cracks may be higher than that for the long cracks under certain crack geometry conditions. Hence, the short cracks instead of long cracks may first start to grow under the thermal shock loading. 展开更多
关键词 functionally graded material thermal fracture parallel cracks alternating lengths stress intensity factor
下载PDF
SEMI-ELLIPTIC SURFACE CRACK IN AN ELASTIC SOLID WITH FINITE SIZE UNDER IMPACT LOADING 被引量:1
12
作者 Guo Ruiping Liu Guanting Fan Tianyou 《Acta Mechanica Solida Sinica》 SCIE EI 2006年第2期122-127,共6页
In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a ... In this paper a semi-elliptic surface crack problem in an elastic solid of finite size under impact loading is investigated. An analysis is performed by means of fracture dynamics and the finite element method, and a three-dimensional finite element program is developed to compute the dynamic stress intensity factor. The results reveal that the effects of the solid's boundary surface, crack surface, material inertia and stress wave interactions play significant roles in dynamic fracture. 展开更多
关键词 surface crack solid of finite size impact loading dynamic stress intensity factor finite element method
下载PDF
A NEW METHOD OF ANALYZING SURFACE CRACKS
13
作者 曾昭景 戴树和 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1993年第8期787-792,共6页
The authors have developed a new line-spring boundary element method in the present paper, which combines the advantage of the line-spring model with that of the boundary element method. This method reduces the three-... The authors have developed a new line-spring boundary element method in the present paper, which combines the advantage of the line-spring model with that of the boundary element method. This method reduces the three-dimension problem of the surface cracks into a quasi-one-dimension problem and can be used to analyze the surface cracked plate under various loading conditions. In this paper theoretical analyses and numerical verifications are carried out. The calculated results are reported, which indicate that the present method is efficient and can be used to analyze the surface crack problem on a personal computer. 展开更多
关键词 line spring model boundary element method surface crack stress intensity factor
下载PDF
Interacting Stress Intensity Factors of Multiple Elliptical-Holes and Cracks Under Far-Field and Arbitrary Surface Stresses
14
作者 Wei Yi Qiuhua Rao +3 位作者 Wei Zhu Qingqing Shen Zhuo Li Wenbo Ma 《Advances in Applied Mathematics and Mechanics》 SCIE 2022年第1期125-154,共30页
Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground ro... Calculating interacting stress intensity factors(SIFs)of multiple ellipticalholes and cracks is very important for safety assessment,stop-hole optimization design and resource exploitation production in underground rock engineering,e.g.,buried tunnels,deep mining,geothermal and shale oil/gas exploitation by hydraulic fracturing technology,where both geo-stresses and surface stresses are applied on buried tunnels,horizontal wells and natural cracks.However,current literatures are focused mainly on study of interacting SIFs of multiple elliptical-holes(or circularholes)and cracks only under far-field stresses without consideration of arbitrary surface stresses.Recently,our group has proposed a new integral method to calculate interacting SIFs of multiple circular-holes and cracks subjected to far-filed and surface stresses.This new method will be developed to study the problem of multiple elliptical-hole and cracks subjected to both far-field and surface stresses.In this study,based on Cauchy integral theorem,the exact fundamental stress solutions of single elliptical-hole under arbitrarily concentrated surface normal and shear forces are derived to establish new integral equation formulations for calculating interacting SIFs of multiple elliptical-holes and cracks under both far-field and arbitrary surface stresses.The new method is proved to be valid by comparing our results of interacting SIFs with those obtained by Green’s function method,displacement discontinuity method,singular integral equation method,pseudo-dislocations method and finite element method.Computational examples of one elliptical-hole and one crack in an infinite elastic body are given to analyze influence of loads and geometries on interacting SIFs.Research results show that whenσ_(xx)^(∞)≥σ^(yy′)^(∞),there appears a neutral crack orientation angle b0(without elliptical-hole’s effect).Increasing s¥xx/s¥yy and b/a(close to circularhole)usually decreases b0 of KI and benefits to the layout of stop-holes.The surface compressive stresses applied onto elliptical-hole(n)and crack(p)have significant influence on interacting SIFs but almost no on b0.Increasing n and p usually results in increase of interacting SIFs and facilitates crack propagation and fracture networks.The elliptical-hole orientation angle(a)and holed-cracked distance(t)have great influence on the interacting SIFs while have little effect on b0.The present method is not only simple(without any singular parts),high-accurate(due to exact fundamental stress solutions)and wider applicable(under far-field stresses and arbitrarily distributed surface stress)than the common methods,but also has the potential for the anisotropic problem involving multiple holes and cracks. 展开更多
关键词 Interacting stress intensity factors multiple elliptical-holes and cracks far-field stresses arbitrary surface stresses integral equation method
原文传递
SCATTERING OF THE HARMONIC STRESS WAVE BY CRACKS IN FUNCTIONALLY GRADED PIEZOELECTRIC MATERIALS 被引量:2
15
作者 Ma Li Nie Wu +1 位作者 Wu Linzhi Zhou Zhengong 《Acta Mechanica Solida Sinica》 SCIE EI 2005年第4期295-301,共7页
The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the F... The present paper considers the scattering of the time harmonic stress wave by a single crack and two collinear cracks in functionally graded piezoelectric material (FGPM). It is assumed that the properties of the FGPM vary continuously as an exponential function. By using the Fourier transform and defining the jumps of displacements and electric potential components across the crack surface as the unknown functions, two pairs of dual integral equations are derived. To solve the dual integral equations, the jumps of the displacement and electric potential components across the crack surface are expanded in a series of Jacobi polynomials. Numerical examples are provided to show the influences of material properties on the dynamic stress and the electric displacement intensity factors. 展开更多
关键词 functionally graded piezoelectric materials crack stress intensity factor stress wave
下载PDF
Dynamic anti-plane analysis for two symmetrically interfacial cracks near circular cavity in piezoelectric bi-materials 被引量:5
16
作者 A.HASSAN 宋天舒 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2014年第10期1261-1270,共10页
The present paper is exposed theoretically to the influence on the dynamic stress intensity factor (DSIF) in the piezoelectric bi-materials model with two symmet- rically permeable interracial cracks near the edges ... The present paper is exposed theoretically to the influence on the dynamic stress intensity factor (DSIF) in the piezoelectric bi-materials model with two symmet- rically permeable interracial cracks near the edges of a circular cavity, subjected to the dynamic incident anti-plane shearing wave (SH-wave). An available theoretical method to dynamic analysis in the related research field is provided. The formulations are based on Green's function method. The DSIFs at the inner and outer tips of the left crack are obtained by solving the boundary value problems with the conjunction and crack- simulation technique. The numerical results are obtained by the FORTRAN language program and plotted to show the influence of the variations of the physical parameters, the structural geometry, and the wave frequencies of incident wave on the dimensionless DSIFs. Comparisons with previous work and between the inner and outer tips are con- cluded. 展开更多
关键词 symmetrically interfacial crack piezoelectric bi-material Green's function dynamic stress intensity factor (DSIF) dynamic anti-plane shearing wave (SH-wave)
下载PDF
DYNAMIC STRESS FIELD AROUND THE MODE Ⅲ CRACK TIP IN AN ORTHOTROPIC FUNCTIONALLY GRADED MATERIAL
17
作者 李春雨 邹振祝 段祝平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 2000年第6期651-658,共8页
The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assu... The problem of a Griffith crack in an unbounded orthotropic functionally graded material subjected to antipole shear impact was studied. The shear moduli in two directions of the functionally graded material were assumed to vary proportionately as definite gradient. By using integral transforms and dual integral equations, the local dynamic stress field was obtained. The results of dynamic stress intensity factor show that increasing shear moduli's gradient of FGM or increasing the shear modulus in direction perpendicular to crack surface can restrain the magnitude of dynamic stress intensity factor. 展开更多
关键词 anisotropic media functionally graded materials dynamic stress intensity factor crack impact
下载PDF
Investigation on 3D fatigue crack propagation in surface-cracked specimens
18
作者 X.Li H.Yuan J.Y.Sun 《Theoretical & Applied Mechanics Letters》 CAS 2013年第4期18-22,共5页
In the present work the fatigue crack growth in AISI304 specimens is investigated experimentally. In 3D finite element analysis the virtual crack closure technique is applied to calculate distributions and variations ... In the present work the fatigue crack growth in AISI304 specimens is investigated experimentally. In 3D finite element analysis the virtual crack closure technique is applied to calculate distributions and variations of the stress intensity factor along the surface crack front. It is confirmed that the stress intensity factor along the surface crack front varies non-uniformly with crack growth. Crack growth rate is proportional to the stress intensity factor distribution in the 3D cracked specimen. The fatigue crack growth in surface cracked specimens can be described by the Forman model identified in conventional compact tension specimens. For crack growth in the free specimen surface the arc length seems more suitable to quantify crack progress. Geometry and loading configuration of the surface cracked specimen seem to not affect the fatigue crack growth substantially. 展开更多
关键词 surface crack crack front fatigue crack growth 3D stress intensity factor
下载PDF
ANALYSIS OF COMPLEX STRESS INTENSITIES FOR CRACKED LAMINATES
19
作者 胡互让 吴承平 《Applied Mathematics and Mechanics(English Edition)》 SCIE EI 1996年第2期119-132,共14页
Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity f... Classical plate theory has been used to find out interfacial stress intensity factors in composite laminates. By using a well-known relation between the crack-tip energy release rate and the complex stress intensity factor. a closed-form solution for complex. Stress intensity in terms of external loading and a mode mix parameter for fairly. general composite laminates is given. Then a procedure for determining this mode mix. parameter is presented. followed by numerical results for some laminates. Small scale contact condition is expressed in terms of external loading In particular, a symmetric property of interfacial toughness curye is proven. Finally. the accuracy of failure load predicled by elininating oscllation index is discussed. and an example is presented to show the validity and limitation of β=0 approximation. 展开更多
关键词 composite materials. laminates complex stress intensity factor.energy release rate. inlerface crack
下载PDF
Crack patterns corresponding to the residual strength plateau of ceramics subjected to thermal shock
20
作者 H.-L.Hou X.-E Wu +3 位作者 P.Yan F.Song J.Li C.-P.Jiang 《Acta Mechanica Sinica》 SCIE EI CAS CSCD 2012年第3期670-674,共5页
The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm&... The formation strength plateau of ceramics is addressed. A set of of 99A1203 are conducted, mechanism of the residual subjected to thermal shock thermal shock experiments where the thin specimens of 1 mm× 10 mm×50 mm exhibit parallel through edge cracks, and thus permit quantitative measurements of the crack patterns. The cracks evolve with the severity of ther- mal shock. It is found that there is a correlation between the length and density of the thermal shock cracks. The increase of crack length weakens the residual strength, whereas the increase of crack density improves it. In a considerably wide temperature range, the two contrary effects just counteract each other; consequently a plateau appears in the variation curve of the residual strength. A comparison between the numerical and experimental results of the residual strength is made, and they are found in good agreement. This work is helpful to a deep understanding of the thermal shock failure of ceramics. 展开更多
关键词 ceramics Thermal shock crack patterns Residual strength - stress intensity factor
下载PDF
上一页 1 2 22 下一页 到第
使用帮助 返回顶部