期刊文献+
共找到29篇文章
< 1 2 >
每页显示 20 50 100
Effect of Interfacial Bonding on the Toughening of Al_2O_3/Ni Ceramic Matrix Composites
1
作者 Xudong SUN(Dept. of Materials Science and Engineering, Northeastern University, Shenyang 110006, China)J.A. Yeomans(Dept. of Materials Science and Engineering, University of Surrey, Guildford, Surrey GU2 5XH, UK) 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 1996年第1期29-34,共6页
The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation.... The main Iimitation to the toughening of the α-Al2O3/Ni composite is the poor bonding atthe interface. which causes the nickel particles to be pulled-out during crack propagation with-out obvious plastic deformation. A proper control of oxygen content at the Al2O3-Ni interfacecan promote wetting at the intedece, and produce a mechanically interlocked and chemically strengthened intedece, causing most of the nickel particles to be stretched to failure and to expe-rience severe plastic deformation during crack propagation in the composite. Fracture toughnesstesting using a modified double cantilever beam method with in situ observation of crack prop-agation in a scanning electron microscope shows that the composite with the strengthenedinterface has a more desirable R-curve behaviour and a higher fracture toughness value than thenormal composite. 展开更多
关键词 AL Effect of Interfacial Bonding on the Toughening of Al2O3/Ni ceramic matrix composites NI
下载PDF
A review on additive manufacturing of ceramic matrix composites 被引量:2
2
作者 Jinxing Sun Daorong Ye +7 位作者 Ji Zou Xiaoteng Chen Yue Wang Jinsi Yuan Haowen Liang Hongqiao Qu Jon Binner Jiaming Bai 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2023年第7期1-16,共16页
Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compa... Additive manufacturing(AM)of ceramic matrix composites(CMCs)has enabled the production of highly customized,geometrically complex and functionalized parts with significantly improved properties and functionality,compared to single-phase ceramic components.It also opens up a new way to shape damage-tolerant ceramic composites with co-continuous phase reinforcement inspired by natural ma-terials.Nowadays,a large variety of AM techniques has been successfully applied to fabricate CMCs,but variable properties have been obtained so far.This article provides a comprehensive review on the AM of ceramic matrix composites through a systematic evaluation of the capabilities and limitations of each AM technique,with an emphasis on reported results regarding the properties and potentials of AM man-ufactured ceramic matrix composites. 展开更多
关键词 Additive manufacturing ceramic matrix composites 3D printing Mechanical properties Bioinspired composites
原文传递
Propulsion tests on ultra-high-temperature ceramic matrix composites for reusable rocket nozzles
3
作者 Diletta Sciti Antonio Vinci +6 位作者 Luca Zoli Pietro Galizia Simone Failla Stefano Mungiguerra Giuseppe D.Di Martino Anselmo Cecere Raffaele Savino 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第7期1345-1360,共16页
Ultra-high-temperature ceramic matrix composites(UHTCMCs)based on a ZrB_(2)/SiC matrix have been investigated for the fabrication of reusable nozzles for propulsion.Three de Laval nozzle prototypes,obtained by sinteri... Ultra-high-temperature ceramic matrix composites(UHTCMCs)based on a ZrB_(2)/SiC matrix have been investigated for the fabrication of reusable nozzles for propulsion.Three de Laval nozzle prototypes,obtained by sintering with either hot pressing(HP)or spark plasma sintering(SPS),were tested 2-3 times in a hybrid rocket motor for proving reusability.Sections were extracted after oxidation tests to study the microstructural changes and oxidative and thermomechanical stresses induced by the repeated tests.Compared to a reference graphite nozzle,no measurable erosion was observed for the UHTCMC-based nozzles.The oxidation mechanism consisted in the formation of a ZrO_(2)intermediate layer,with a liquid silicon oxide(SiO_(2))layer on the surface that was displaced by the action of the gas flux towards the divergent part of the nozzle,protecting it from further oxidation.Both specimens obtained by HP and SPS displayed similar performance,with very slight differences,which were attributed to small changes in porosity.These tests demonstrated the capability of complex-shaped prototypes made of the developed UHTCMCs to survive repeated exposure to environments representative of a realistic space propulsion application,for overall operating time up to 30 s,without any failure nor measurable erosion,making a promising step towards the development of reusable rocket components. 展开更多
关键词 ultra-high-temperature ceramics(UHTCs) ceramic matrix composites(CMCs) PROPULSION oxidation resistance nozzle prototypes
原文传递
Machining of SiC ceramic matrix composites:A review 被引量:23
4
作者 Qinglong AN Jie CHEN +1 位作者 Weiwei MING Ming CHEN 《Chinese Journal of Aeronautics》 SCIE EI CAS CSCD 2021年第4期540-567,共28页
Continuous fiber reinforced SiC ceramic matrix composites(FRCMCs-SiC)are currently the preferred material for hot section components,safety–critical components and braking components(in the aerospace,energy,transport... Continuous fiber reinforced SiC ceramic matrix composites(FRCMCs-SiC)are currently the preferred material for hot section components,safety–critical components and braking components(in the aerospace,energy,transportation)with high value,and have triggered the demand for machining.However,the high brittleness,anisotropy,and heterogeneity of materials bring great challenges to machining,due to high mechanical and thermal loads,severe tool wear,and poor machining quality.With the increasing demand of FRCMCs-SiC parts,high-quality and high-efficient machining has become a hot issue.This review paper provides a detailed literature survey on the machining of FRCMCs-SiC.The material removal mechanism,defect form,and interfacial mechanical properties of FRCMCs-SiC were summarized.The machining processes of FRCMCs-SiC were introduced,and their respective advantages and disadvantages were compared.Given the low machinability(high hardness,high brittleness,anisotropy,and heterogeneity)of FRCMCs-SiC,preliminary experiments have proved that ultrasonic-assisted machining and laser-assisted machining have shown unique advantages in reducing force and tool wear,improving machining quality and machining efficiency.The machined surface integrity was discussed,the influence of process parameters on the machined surface quality was analyzed,and the machining defects of FRCMCs-SiC were summarized.But for FRCMCs-SiC,the existing quantitative evaluation of the machined surface integrity was weak and unsystematic. 展开更多
关键词 ceramic matrix composites MACHINING Material removal mechanisms QUALITY Surface integrity
原文传递
Recent progress in ceramic matrix composites reinforced with graphene nanoplatelets 被引量:4
5
作者 Bei-Ying Zhou Sheng-Jie Fan +4 位作者 Yu-Chi Fan Qi Zheng Xin Zhang Wan Jiang Lian-Jun Wang 《Rare Metals》 SCIE EI CAS CSCD 2020年第5期513-528,共16页
Graphene nanoplatelets(GNPs)are considered to be one of the most promising new reinforcements due to their unique two-dimensional structure and remarkable mechanical properties.In addition,their impressive electrical ... Graphene nanoplatelets(GNPs)are considered to be one of the most promising new reinforcements due to their unique two-dimensional structure and remarkable mechanical properties.In addition,their impressive electrical and thermal properties make them attractive fillers for producing multifunctional ceramics with a wide range of applications.This paper reviews the current status of the research and development of graphene-reinforced ceramic matrix composite(CMC)materials.Firstly,we focused on the processing methods for effective dispersion of GNPs throughout ceramic matrices and the reduction of the porosity of CMC products.Then,the microstructure and mechanical properties are provided,together with an emphasis on the possible toughening mechanisms that may operate.Additionally,the unique functional properties endowed by GNPs,such as enhanced electrical/thermal conductivity,are discussed,with a comprehensive comparison in different ceramic matrices as oxide and nonoxide composites.Finally,the prospects and problems needed to be solved in GNPs-reinforced CMCs are discussed. 展开更多
关键词 Graphene nanoplatelets ceramic matrix composites Processing methods Mechanical properties Functional properties
原文传递
不同编织方式下陶瓷基复合材料表面流动特性数值计算研究
6
作者 张金月 杨荣菲 +1 位作者 吴兴爽 葛宁 《风机技术》 2024年第2期38-43,共6页
Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoi... Ceramic matrix composites(CMCs) are one of the most promising materials in the field of gas turbines,with superior weight and thermal properties. Its surface morphology is different from the traditional casting airfoil components, which mainly comes from different weaving methods and different braided tow thickness. However, few people have studied the influence of surface morphology of ceramic matrix composites(CMCs) on the development of boundary layer and the resulting flow loss. In this paper, Tex Gen is used to generate different surface morphology structures of ceramic matrix composites(CMCs), and the surface flow characteristics of corresponding CMCs plates are numerically studied. It is found that the slope of the displacement thickness of the woven surface first increases and then decreases in the whole transition interval. Thicker braided tow thickness and denser braiding method will induce earlier flow transition phenomenon and produce greater flow loss;The flow loss on the surface of CMCs plate is mainly composed of the vortex loss in the pit and the boundary layer loss outside the pit, and the boundary layer loss is dominant. The weaving methods has a greater influence on the flow state and flow loss of the boundary layer. 展开更多
关键词 ceramic matrix composites Weave Pattern Boundary Layer Transition PIT Flow Loss
下载PDF
A novel approach for manufacturing of layered,ultra-refractory composites using pliable,short fibre-reinforced ceramic sheets 被引量:1
7
作者 Matteo MOR Antonio VINCI +3 位作者 Simone FAILLA Pietro GALIZIA Luca ZOLI Diletta SCITI 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2023年第1期155-168,共14页
A new additive technique for manufacturing of short fibre-reinforced ultra-refractory ceramics is presented.This technique allows the fabrication of solvent-free,thin(~100µm),flexible,and easy-to-handle sheets su... A new additive technique for manufacturing of short fibre-reinforced ultra-refractory ceramics is presented.This technique allows the fabrication of solvent-free,thin(~100µm),flexible,and easy-to-handle sheets suitable for fabricating homogeneous or layered structures.A large range of compositions,in terms of matrix and fibre volumetric contents,from 0%to 100%is possible.The amount of short carbon fibres incorporated in the sheets ranged from 20 to 50 vol%,whereas the fibre length ranged from 3 to 5 mm.The matrix composition investigated with this technique consisted of ZrB_(2)/SiC/Y_(2)O_(3).By increasing the fibre amount from 35 to 50 vol%,an improvement of mechanical properties was observed.Four-point flexural strength(σ)ranged from 107 to 140 MPa,depending on the amount of carbon fibres(Cf).The same holds true for the work of fracture,ranging from 108 to 253 J/m^(2).Functionally graded composites were fabricated by overlapping sheets with a fibre gradient(0%-50%). 展开更多
关键词 ultra-high-temperature ceramics(UHTCs) ceramic matrix composites(CMCs) short carbon fibres mechanical properties
原文传递
Universal paradigm of ternary metacomposites with tunable epsilon-negative and epsilon-near-zero response for perfect electromagnetic shielding
8
作者 Yun-Peng Qu Yun-Lei Zhou +7 位作者 Yang Luo Yao Liu Jun-Fei Ding Yan-Li Chen Xiu Gong Jing-Liang Yang Qiong Peng Xiao-Si Qi 《Rare Metals》 SCIE EI CAS CSCD 2024年第2期796-809,共14页
CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric res... CaCu_(3)Ti_(4)O_(12)(CCTO)ceramic nanocomposites incorporating graphene–carbon black(GRCB)fillers were fabricated by spark plasma sintering process.The percolative effects of conductive GRCB fillers on dielectric response of GRCB/CCTO ternary metacomposites were systematically investigated.The weakly real permittivity(ε′)-negative response(ε′~−1×10^(2))was achieved which originated from weakly low-frequency plasmonic state of free carriers within constructed GRCB networks.With enhancing three-dimensional GRCB network,the plasma frequency of metacomposites increased while the damping factor decreased.Herein,theε′-negative values of metacomposites were tuned from−10^(2) to−10^(4) orders of magnitude andε′-near-zero(ENZ)frequencies from~142 to~340 MHz which substantially benefited from the moderate carrier concentration of GRCB dual fillers.The Drude model and equivalent circuit models were adopted to demonstrate dielectric and electrical characteristics.The obtained metacomposites show strong EM shielding effect along with enhanced plasmonic oscillation and even better achieving perfect EM shielding effect in ENZ media.This work achieves the tunableε′-negative andε′-near-zero response and more importantly clarifies its regulation mechanism in ceramic-based ternary metacomposites,which opens up the possibility of designing high-performance EM shielding materials based on metacomposites. 展开更多
关键词 Metacomposites ceramic matrix composites Negative permittivity Epsilon-near-zero Electromagnetic shielding
原文传递
Experimental Study on the Overall Cooling Effectiveness of Effusion-Cooling Ceramic Matrix Composite Platform
9
作者 DU Kun CHEN Qihao +2 位作者 HUANG Xiaoyang LIANG Tingrui LIU Cunliang 《Journal of Thermal Science》 SCIE EI CAS CSCD 2023年第3期1034-1048,共15页
Ceramic matrix composite(CMC),with higher thermal limit and lower density relative to the superalloy,is regarded as the most important structural material for modern gas turbine engines.However,the anisotropic thermal... Ceramic matrix composite(CMC),with higher thermal limit and lower density relative to the superalloy,is regarded as the most important structural material for modern gas turbine engines.However,the anisotropic thermal conductivities caused by the weave patterns totally change the thermal conduction performance inside the solid domain.Therefore,the present study aims to use the infrared thermographic to measure the SiC/SiC composite platform with staggered effusion holes along with the superalloy platform.CMC platform is prepared by 2-D plain weave braid structure with chemical vapor infiltration(CVI)process.The temperature of mainstream is 900 K to match the real mainstream to coolant temperature ratio(T_(g)/T_(c)=1.5,2.1).The experimental was conducted with seven mass flow ratios(MFR=1.5%-4.5%).The results indicate that the thermal conductivity along the thickness direction is of great importance for the CMC platform.The superalloy platform obtains higher level of overall cooling effectiveness than CMC at T_(g)/T_(c)=1.5.However,the CMC platform achieves greater overall cooling effectiveness relative to superalloy at T_(g)/T_(c)=2.1.In addition,CMC platform presents enhanced uniformity of overall cooling effectiveness due to the larger in-plane thermal conductivity. 展开更多
关键词 conjugate heat transfer effusion cooling ceramic matrix composite temperature ratio
原文传递
Enhanced thermal conductivity and mechanical properties of 2D C_(f)/SiC composites modified by in-situ grown carbon nanotubes
10
作者 Changhui Niu Qing Zhang +4 位作者 Laifei Cheng Fang Ye Litong Zhang Min Huang Tao Yang 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2024年第1期19-33,共15页
In this work,the effects of carbon nanotubes(CNTs)on the microstructure evolution,thermal conductivity,and mechanical properties of C_(f)/SiC composites during chemical vapor infiltration(CVI)densification were invest... In this work,the effects of carbon nanotubes(CNTs)on the microstructure evolution,thermal conductivity,and mechanical properties of C_(f)/SiC composites during chemical vapor infiltration(CVI)densification were investigated in detail.Compared with composites without CNTs,the thermal conductivity,flexural strength,flexural modulus,fracture toughness,interfacial shear strength,and proportional limit stress of specimens with CNTs of 4.94 wt%were improved by 117%,21.8%,67.4%,10.3%,36.4%,and 71.1%,respectively.This improvement was attributed to the role of CNTs in the division of inter-layer pores,which provided abundant vapor growth sites for the ceramic matrix and promoted densification of the whole composite.In addition,the high thermal conductivity network formed by the overlap of CNTs and the rivet strengthening effect of CNTs were beneficial for synergistic improvement of thermal conductivity and mechanical properties of the composites.Therefore,this study has practical significance for the development of thermal protection composite components with enhanced thermal conductivity and mechanical characteristics. 展开更多
关键词 ceramicmatrix composites carbon nanotubes MICROSTRUCTURE thermal conductivity mechanical properties
原文传递
Carbon nanotube-carbon black/CaCu_(3)Ti_(4)O_(12) ternary metacomposites with tunable negative permittivity and thermal conductivity fabricated by spark plasma sintering
11
作者 Yun-Peng Qu Hai-Kun Wu +7 位作者 Pei-Tao Xie Ni Zeng Yan-Li Chen Xiu Gong Jing-Liang Yang Qiong Peng Yu Xie Xiao-Si Qi 《Rare Metals》 SCIE EI CAS CSCD 2023年第12期4201-4211,共11页
Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(... Metacomposites with negative permittivity usually possess huge dielectric loss,showing potential for micro-wave attenuation devices where huge heat would generate.Herein,carbon nanotube-carbon black/CaCu_(3-)Ti_(4)O_(12)(CNT-CB/CCTO)ternary metacomposites were fabricated by spark plasma sintering.The CNT-CB dualphase filler was pre-pared through electrostatic selfassembly process in order to construct an effective 3-dimensional(3D)carbon network in CCTO matrix.The percolation threshold of CNT-CB/CCTO composites was identified at filler content of 12.52 wt%which accompanied with an essential change of conduction mechanism.The negative permittivity was derived from low-frequency plasmonic state of the 3D carbon network,described by Drude model.The problem of heat transport,generally occurring in negative permittivity materials,has been solved and optimized in obtained ternary metacomposites beneftting from the substantially high thermal conductivity(9.49-2.00 W·m^(-1)·K^(-1))and diffusivity(2.74-1.22mm^(2)·s^(-1)).This work could spark significant development of practical application of metacomposites on novel electronic devices and electromagnetic apparatus. 展开更多
关键词 Metacomposites ceramic matrix composites Negative permittivity Thermal conductivity
原文传递
Long-term ceramic matrix composite for aeroengine 被引量:2
12
作者 Chaokun SONG Fang YE +2 位作者 Laifei CHENG Yongsheng LIU Qing ZHANG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第9期1343-1374,共32页
Three strategies were proposed to prolong the service life of continuous fiber-reinforced silicon carbide ceramic matrix composite(CMC-SiC),which served as thermal-structure components of aeroengine at thermo-mechanic... Three strategies were proposed to prolong the service life of continuous fiber-reinforced silicon carbide ceramic matrix composite(CMC-SiC),which served as thermal-structure components of aeroengine at thermo-mechanical-oxygenic coupling environment.As for some thermal-structure components with low working stress,improving the degree of densification was crucial to prolong the service life,and the related process approaches were recited.If the thermal-structure components worked under moderate stress,the matrix cracking stress(σ^(mc))should be improved as far as possible.The fiber preform architecture,interface shear strength,residual thermal stress,and matrix strengthening were associated withσ_(mc)in this review.Introducing self-healing components was quite significant with the appearance of matrix microcracks when CMC-SiC worked at more severe environment for hundreds of hours.The damage can be sealed by glass phase originating from the reaction between self-healing components and oxygen.The effective self-healing temperature range of different self-healing components was first summarized and distinguished.The structure,composition,and preparation process of CMC-SiC should be systematically designed and optimized to achieve long duration target. 展开更多
关键词 high degree of densification matrix cracking stress SELF-HEALING DURATION silicon carbide ceramic matrix composite(CMC-SiC)
原文传递
Microstructural evolution of h-BN matrix composite ceramics with La-Al-Si-O glass phase during hot-pressed sintering 被引量:2
13
作者 Baofu QIU Xiaoming DUAN +9 位作者 Zhuo ZHANG Chen ZHAO Bo NIU Peigang HE Delong CAI Lei CHEN Zhihua YANG Yujin WANG Dechang JIA Yu ZHOU 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第3期493-501,共9页
BN/La-Al-Si-O composite ceramics were fabricated by hot-pressed sintering using hexagonal boron nitride(h-BN),lanthanum oxide(La_(2)O_(3)),aluminia(Al_(2)O_(3)),and amorphous silica(SiO_(2))as the raw materials.The ef... BN/La-Al-Si-O composite ceramics were fabricated by hot-pressed sintering using hexagonal boron nitride(h-BN),lanthanum oxide(La_(2)O_(3)),aluminia(Al_(2)O_(3)),and amorphous silica(SiO_(2))as the raw materials.The effects of sintering temperature on microstructural evolution,bulk density,apparent porosity,and mechanical properties of the h-BN composite ceramics were investigated.The results indicated that La-Al-Si-O liquid phase was formed during sintering process,which provided an environment for the growth of h-BN grains.With increasing sintering temperature,the cristobalite phase precipitation and h-BN grain growth occurred at the same time,which had a significant influence on the densification and mechanical properties of h-BN composite ceramics.The best mechanical properties of BN/La-Al-Si-O composite ceramics were obtained under the sintering temperature of 1700℃.The elastic modulus,flexural strength,and fracture toughness were 80.5 GPa,266.4 MPa,and 3.25 MPa·m^(1/2),respectively. 展开更多
关键词 h-BN matrix composite ceramics La-A1-Si-O glass phase microstructural evolution nanocrystalline precipitation mechanical properties
原文传递
Thermal Stress and Assembling Parameters Evolution of CMC Bolted Joint under Transient Thermal Loads
14
作者 Shuyuan Zhao Zhengyu Li +2 位作者 Zeliang Pu Xinyang Sun Wenjiao Zhang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第3期1-8,共8页
Ceramic matrix composite(CMC) and superalloy bolted joints have exhibited great potential for high temperature hot structure application in hypersonic aircraft. In service conditions, the thermal expansion mismatch be... Ceramic matrix composite(CMC) and superalloy bolted joints have exhibited great potential for high temperature hot structure application in hypersonic aircraft. In service conditions, the thermal expansion mismatch between CMC and superalloy plates will cause complex thermal stress and strain distributions at hole-edge areas and assembly parameters changes of the joints under elevated temperatures. These effects might lead to early damage of joint structure, which will endanger the structural integrity and load carrying capacity of aircraft components. In the present study, transient heat transfer and thermo-structural analysis of C/SiC composite and superalloy bolted joint were carried out by using a commercial FEA software ABAQUS. The stress distributions at hole-edge areas, pre-load loosening, and variation of bolt-hole clearance of CMC bolted joints under transient temperature rises were discussed for better understanding of high temperature structural behaviors. Results showed that pre-load declined with the increase of imposed hot side temperature, due to the thermal expansion mismatch between CMC and superalloy. The bolt-hole clearance for the composite plate decreased, whereas the clearance for the superalloy plate increased with the rise of temperature. 展开更多
关键词 ceramic matrix composite heat transfer thermal stress pre-load bolt-hole clearance
下载PDF
Influence of Assembly Parameters on Tensile Behavior of Hybrid CMC and Superalloy Bolted Joints by Progressive Damage Analysis
15
作者 Chao Lv Feng Li +3 位作者 Shuyuan Zhao Qian Sun Mingrui Li Xinyang Sun 《Journal of Harbin Institute of Technology(New Series)》 CAS 2021年第3期53-60,共8页
With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of a... With the considerable applications of ceramic matrix composites(CMC) in aircraft engineering, the design of CMC bolted joint gains paramount attention because of its capacity to to improve load-bearing efficiency of aircraft key structure. In this work, a 3 D finite element model was established to predict tensile performance and failure modes of single-lap, single-bolt 2 D C/SiC composite, and superalloy joint, which considers the progressive damage behavior of 2 D woven C/SiC composites. On the basis of the developed progressive damage model, a parametric study was carried out to illustrate the effects of bolt preload and bolt-hole clearance on mechanical behaviors of the hybrid bolted joint. It was found that the increase in the value of bolt preload made the failure load grow first and then drop, and the optimum value of bolt preload 5.00 kN generated 56.47% rise in the initial failure load and 22.83% rise in the final failure load for the bolted joint in comparison with zero preload case. As the clearance increased from 0 to 2.00%, the initial and final failure loads respectively declined by 45.88% and 24.02% for 2.00% bolt-hole clearance relative to the neat-fit case. The loss in failure loads can be reduced to compressive stress concentration around the fastening hole-edge area, leading to the appearance of earlier damages by the introduction of increasing bolt hole clearance. 展开更多
关键词 ceramic matrix composite progressive damage analysis tensile performance bolt preload bolt-hole clearance
下载PDF
(La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4: A high-entropy rare-earth phosphate monazite ceramic with low thermal conductivity and good compatibility with Al2O3 被引量:15
16
作者 Zifan Zhao Heng Chen +4 位作者 Huimin Xiang Fu-Zhi Dai Xiaohui Wang Zhijian Peng Yanchun Zhou 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2019年第12期2892-2896,共5页
Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. I... Low thermal conductivity, matched thermal expansion coefficient and good compatibility are general requirements for the environmental/thermal barrier coatings(EBCs/TBCs) and interphases for Al2O3 f/Al2O3 composites. In this work, a novel high-entropy(HE) rare-earth phosphate monazite ceramic (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is designed and successfully synthesized. This new type of HE rare-earth phosphate monazite exhibits good chemical compatibility with Al2O3, without reaction with Al2O3 as high as 1600℃ in air. Moreover, the thermal expansion coefficient(TEC) of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4(8.9 × 10^-6/℃ at 300–1000℃) is close to that of Al2O3. The thermal conductivity of HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 at room temperature is as low as 2.08 W·m^-1·K^-1, which is about 42% lower than that of La PO4. Good chemical compatibility, close TEC to that of Al2O3, and low thermal conductivity indicate that HE (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 is suitable as a candidate EBC/TBC material and an interphase for Al2O3 f/Al2O3 composites. 展开更多
关键词 (La0.2Ce0.2Nd0.2Sm0.2Eu0.2)PO4 High-entropy ceramics Al2O3f/Al2O3ceramic matrix composites Environmental barrier coating materials Interphase material Thermal expansion coefficient Thermal conductivity Solution synthesis Rare-earth phosphates MONAZITE
原文传递
Microstructure and mechanical properties of 3D Cf/SiBCN composites fabricated by polymer infiltration and pyrolysis 被引量:4
17
作者 Bowen CHEN Qi DING +4 位作者 Dewei NI Hongda WANG Yusheng DING Xiangyu ZHANG Shaoming DONG 《Journal of Advanced Ceramics》 SCIE CAS CSCD 2021年第1期28-38,共11页
In this work,three-dimensional(3D)Cf/SiBCN composites were fabricated by polymer infiltration and pyrolysis(PIP)with poly(methylvinyl)borosilazane as SiBCN precursor.The 3D microstructure evolution process of the comp... In this work,three-dimensional(3D)Cf/SiBCN composites were fabricated by polymer infiltration and pyrolysis(PIP)with poly(methylvinyl)borosilazane as SiBCN precursor.The 3D microstructure evolution process of the composites was investigated by an advanced X-ray computed tomography(XCT).The effect of dicumyl peroxide(DCP)initiator addition on the crosslinking process,microstructure evolution,and mechanical properties of the composites were uncovered.With the addition of a DCP initiator,the liquid precursor can cross-linking to solid-state at 120℃.Moreover,DCP addition decreases the release of small molecule gas during pyrolysis,leading to an improved ceramic yield 4.67 times higher than that without DCP addition.After 7 PIP cycles,density and open porosity of the final Cf/SiBCN composite with DCP addition are 1.73 g.cm^(-3)and〜10%,respectively,which are 143.0%higher and 30.3%lower compared with the composites without DCP addition.As a result,the flexural strength and elastic modulus of Cf/SiBCN composites with DCP addition(371 MPa and 31 GPa)are 1.74 and 1.60 times higher than that without DCP addition(213 MPa and 19.4 GPa),respectively. 展开更多
关键词 Cf/SiBCN ceramic matrix composites dicumyl peroxide(DCP) X-ray computed tomography(XCT)
原文传递
Ambient flash sintering of reduced graphene oxide/zirconia composites:Role of reduced graphene oxide 被引量:2
18
作者 Weiwei Xiao Na Ni +3 位作者 Xiaohui Fan Xiaofeng Zhao Yingzheng Liu Ping Xiao 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第1期70-76,共7页
Fabrication of graphene/ceramic composites commonly requires a high-temperature sintering step with long times as well as a vacuum or inert atmosphere,which not only results in property degradation but also significan... Fabrication of graphene/ceramic composites commonly requires a high-temperature sintering step with long times as well as a vacuum or inert atmosphere,which not only results in property degradation but also significant equipment complexity and manufacturing costs.In this work,the ambient flash sintering behavior of reduced graphene oxide/3 mol% yttria-stabilized ZrO_(2)(rGO/3 YSZ) composites utilizing rGO as both a composite component and a conductive additive is reported.When the sintering condition is carefully optimized,a dense and conductive composite can be achieved at room temperature and in the air within 20 s.The role of the rGO in the FS of the rGO/3 YSZ composites is elucidated,especially with the assistance of a separate investigation on the thermal runaway behavior of the rGO.The work suggests a promising fabrication route for rGO/ceramic composites where the vacuum and furnace are not needed,which is of interest in terms of simplifying the fabrication equipment for energy and cost savings. 展开更多
关键词 Flash sintering Reduced graphene oxide ZIRCONIA ceramic matrix composites
原文传递
Effects of interfacial residual stress on mechanical behavior of SiC_(f)/SiC composites 被引量:1
19
作者 Xiaowu CHEN Guofeng CHENG +4 位作者 Jinshan YANG Jianbao HU Chunjin LIAO Xiangyu ZHANG Shaoming DONG 《Journal of Advanced Ceramics》 SCIE EI CAS CSCD 2022年第1期94-104,共11页
Layer-structured interphase,existing between reinforcing fiber and ceramics matrix,is an indispensable constituent for fiber-reinforced ceramic composites due to its determinant role in the mechanical behavior of the ... Layer-structured interphase,existing between reinforcing fiber and ceramics matrix,is an indispensable constituent for fiber-reinforced ceramic composites due to its determinant role in the mechanical behavior of the composites.However,the interphase may suffer high residual stress because of the mismatch of thermal expansion coefficients in the constituents,and this can exert significant influence on the mechanical behavior of the composites.Here,the residual stress in the boron nitride(BN)interphase of continuous SiC fiber-reinforced SiC composites was measured using a micro-Raman spectrometer.The effects of the residual stress on the mechanical behavior of the composites were investigated by correlating the residual stress with the mechanical properties of the composites.The results indicate that the residual stress increases from 26.5 to 82.6 MPa in tension as the fabrication temperature of the composites rises from 1500 to 1650℃.Moreover,the increasing tensile residual stress leads to significant variation of tensile strain,tensile strength,and fiber/matrix debonding mode of the composites.The sublayer slipping of the interphase caused by the residual stress should be responsible for the transformation of the mechanical behavior.This work can offer important guidance for residual stress adjustment in fiber-reinforced ceramic composites. 展开更多
关键词 ceramic matrix composites Raman spectroscopy mechanical properties residual stress
原文传递
Chemical reactions and thermal stress induced microstructure evolution in 2D-C_(f)/ZrB_(2)-SiC composites 被引量:1
20
作者 Bo-Wen Chen De-Wei Ni +5 位作者 Chun-Jing Liao You-Lin Jiang Jun Lu Yu-Sheng Ding Hong-Da Wang Shao-Ming Dong 《Journal of Materials Science & Technology》 SCIE EI CAS CSCD 2021年第24期75-82,共8页
Fibers degradation and matrix cracks are very common during fabrication of composites,which seriously reduces the reliability and properties of the composites.In this work,2 D-C_(f)/Zr B_(2)-Si C composites were fabri... Fibers degradation and matrix cracks are very common during fabrication of composites,which seriously reduces the reliability and properties of the composites.In this work,2 D-C_(f)/Zr B_(2)-Si C composites were fabricated by a joint processing of slurry infiltration and hot pressing.Based on thermal kinetics calculation,finite element simulation and detailed microstructure characterization,fibers degradation and matrix cracks formation mechanisms of the composites are discussed and revealed.Oxide impurities including SiO_(2)and ZrO_(2)react with carbon fibers,resulting in formation of Zr C,Si C particles and etching pits on the fibers,which also leads to a strong bonding between the fibers and matrix.On the other hand,thermal expansion mismatch between the fibers and matrix gives rise to serious thermal stress in the composites.The thermal stress distribution and development are analyzed by finite element simulation,which is in good agreement with the cracks’formation in the composites.Based on the revealed microstructure evolution mechanisms,a potential solution to mitigate fibers degradation and matrix cracks is put forward. 展开更多
关键词 ceramic matrix composites Carbon fiber Residual stress
原文传递
上一页 1 2 下一页 到第
使用帮助 返回顶部