期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Strengthening and Toughening Effect of Yttrium on Al_(2)O_(3)/TiCN Ceramic Tool Material 被引量:1
1
作者 许崇海 艾兴 +1 位作者 黄传真 邓建新 《Journal of Rare Earths》 SCIE EI CAS CSCD 2000年第1期73-76,共4页
The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurit... The strengthening and toughening effect of yttrium on an advanced Al2O3/TiCN ceramic tool material was studied by means of SEM 9 TEM and energy spectrum analysis. Results showed that yttrium can react with the impurity elements such as W, Fe, Cr, etc. Thus, the interfaces between ceramic phases are purified and the interfacial binding strength is increased. As a result, the mechanical properties of the AL2O3/TiCN ceramic tool material reinforced with yttrium are improved significantly. In addition, the effect of yttrium on particle strengthening of the solid solution TiCN may partly contribute to the improvement of the mechanical properties. 展开更多
关键词 rare earths YTTRIUM ceramic tool material strengthening and toughening
下载PDF
Effects of Rare Earth Elements on Wear Resistance of Ceramic Tool Materials 被引量:1
2
作者 许崇海 杨晓蓉 冯林 《Journal of Rare Earths》 SCIE EI CAS CSCD 2007年第S1期485-488,共4页
Through the addition of Y, Sm and Ce in Al2O3/(W, Ti)C ceramic matrix, it was found that the amount and kind of the added rare earth elements have some different influences on the mechanical properties and wear resist... Through the addition of Y, Sm and Ce in Al2O3/(W, Ti)C ceramic matrix, it was found that the amount and kind of the added rare earth elements have some different influences on the mechanical properties and wear resistance of the composite. Under the present experimental conditions, the flank wear curves of the selected ceramic tool materials when machining the hardened tool steel obeyed the wear law well. But wear resistance of different ceramic materials varied with each other. Wear resistance of rare earth ceramic tool materials was higher than that of the corresponding materials without rare earth. Wear modes of the developed Al2O3/(W, Ti)C series rare earth ceramic tool materials were mainly flank wear and accompanied with slight crater wear. 展开更多
关键词 ceramic tool material wear resistance rare earths
下载PDF
Synergistically Toughening Effect of SiC Whiskers and Nanoparticles in Al_2O_3-based Composite Ceramic Cutting Tool Material 被引量:4
3
作者 LIU Xuefei LIU Hanlian +3 位作者 HUANG Chuanzhen WANG Limei ZOU Bin ZHAO Bin 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2016年第5期977-982,共6页
In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent ... In recent decades, many additives with different characteristics have been applied to strengthen and toughen Al2O3-based ceramic cutting tool materials. Among them, SiC whiskers and SiC nanoparticles showed excellent performance in improving the material properties. While no attempts have been made to add SiC whiskers and SiC nanoparticles together into the ceramic matrix and the synergistically toughening effects of them have not been studied. An Al2O3-SiCw-SiC np advanced ceramic cutting tool material is fabricated by adding both one-dimensional SiC whiskers and zero-dimensional SiC nanoparticles into the Al2O3 matrix with an effective dispersing and mixing process. The composites with 25 vol% SiC whiskers and 25 vol% SiC nanoparticles alone are also investegated for comparison purposes. Results show that the Al2O3-SiCw-SiCnp composite with both 20 vo1% SiC whiskers and 5 vol% SiC nanoparticles additives have much improved mechanical properties. The flexural strength of Al2O3-SiCw-SiCnp is 730+ 95 MPa and fracture toughness is 5.6 ± 0.6 MPa.m1/2. The toughening and strengthening mechanisms of SiC whiskers and nanoparticles are studied when they are added either individually or in combination. It is indicated that when SiC whiskers and nanoparticles are added together, the grains are further refined and homogenized, so that the microstructure and fracture mode ratio is modified. The SiC nanoparticles are found helpful to enhance the toughening effects of the SiC whiskers. The proposed research helps to enrich the types of ceramic cutting tool and is benefit to expand the application range of ceramic cutting tool. 展开更多
关键词 Al2O3-based ceramic cutting tool materials SiC whiskers SiC nanoparticles mechanical properties toughening and strengthening mechanisms
下载PDF
Relationship Between Thermal Shock Behavior and Cutting Performance of a Functionally Gradient Ceramic Tool 被引量:6
4
作者 ZHAO Jun, AI Xing, HUANG Xin-ping (School of Mechanical Engineering, Shandong University, Jinan 250061, China) 《厦门大学学报(自然科学版)》 CAS CSCD 北大核心 2002年第S1期61-62,共2页
Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in th... Based on the deep understanding of the requirements of cutting conditions on ceramic tools, a design model for functionally gradient ceramic tool materials with symmetrical composition distribution was presented in this paper, according to which an Al 2O 3-TiC functionally gradient ceramic tool material FG-1 was synthesized by powder-laminating and uniaxially hot-pressing technique. The thermal shock resistance of the Al 2O 3-TiC functionally gradient ceramics FG-1 was evaluated by water quenching and subsequent three-point bending tests of flexural strength diminution. Comparisons were made with results from parallel experiments conducted using a homogeneous Al 2O 3-TiC ceramics. Functionally gradient ceramics exhibited higher retained strength under all thermal shock temperature differences compared to homogeneous ceramics, indicating the higher thermal shock resistance. The experimental results were supported by the calculation of transient thermal stress field. The cutting performance of the Al 2O 3-TiC functionally gradient ceramic tool FG-1 was also investigated in rough turning the cylindrical surface of exhaust valve of diesel engine in comparison with that of a common Al 2O 3-TiC ceramic tool LT55. The results indicated that the tool life of FG-1 increased by 50 percent over that of LT55. Tool life of LT55 was mainly controlled by thermal shock cracking which was accompanied by mechanical shock. While tool life of FG-1 was mainly controlled by mechanical fatigue crack extension rather than thermal shock cracking, revealing the less thermal shock susceptibility of functionally gradient ceramics than that of common ceramics. 展开更多
关键词 functionally gradient materials ceramic tool materials thermal shock resistance transient thermal stress cutting performance
下载PDF
MULTI-SCALE AND MULTI-PHASE NANOCOMPOSITE CERAMIC TOOLS AND CUTTING PERFORMANCE 被引量:3
5
作者 HUANG Chuanzhen LIU Hanlian +1 位作者 WANG Jun WANG Hui 《Chinese Journal of Mechanical Engineering》 SCIE EI CAS CSCD 2007年第5期5-7,共3页
An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and f... An advanced ceramic cutting tool material Al2O3/TiC/TiN (LTN) is developed by incorporation and dispersion of micro-scale TiC particle and nano-scale TiN particle in alumina matrix. With the optimal dispersing and fabricating technology, this multi-scale and multi-phase nanocomposite ceramic tool material can get both higher flexural strength and fracture toughness than that of A1203/TiC (LZ) ceramic tool material without nano-scale TiN particle, especially the fracture toughness can reach to 7.8 MPa . m^0.5. The nano-scale TiN can lead to the grain fining effect and promote the sintering process to get a higher density. The coexisting transgranular and intergranular fracture mode induced by micro-scale TiC and nano-scale TiN, and the homogeneous and densified microstructure can result in a remarkable strengthening and toughening effect. The cutting performance and wear mechanisms of the advanced multi-scale and multi-phase nanocomposite ceramic cutting tool are researched. 展开更多
关键词 Multi-scale and multi-phase ceramic tool material Mechanical properties Cutting performance
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部