[ Objective] This study was to analyze the two hydrochemical factors affecting the distribution of Ceratopteris thalictroides, further to provide basis for its habitat protection and population restoration. [ Method ]...[ Objective] This study was to analyze the two hydrochemical factors affecting the distribution of Ceratopteris thalictroides, further to provide basis for its habitat protection and population restoration. [ Method ] Twenty two hydrochemical parameters of 22 sampling sites in China's tropical and subtropical zones were respectively averaged for calculating their variation coefficients, of which the two showing significant differences were used for multiple comparisons and correlation analyses via least significant difference and correlation coefficient. E Result ] The correlation coefficients of all the 22 tested hydrochemical parameters varied hugely, but only pH value and conductivity showed significantly differences in two water body (type A and type B). Analysis of correlation presented that pH value were positively correlated with conductivity; further the multiple comparisons showed that the significant difference of pH value was higher than that of conductivity. [Conclusion] With regard to the two hydrochemical parameters showing significant differences, pH value influences the distribution of C. thalictroides more.展开更多
Understanding how natural hybridization and polyploidizations originate in plants requires identifying potential diploid ancestors.However,cryptic plant species are widespread,particularly in Ceratopteris(Pteridaceae)...Understanding how natural hybridization and polyploidizations originate in plants requires identifying potential diploid ancestors.However,cryptic plant species are widespread,particularly in Ceratopteris(Pteridaceae).Identifying Ceratopteris cryptic species with different polyploidy levels is a challenge because Ceratopteris spp.exhibit high degrees of phenotypic plasticity.Here,two new cryptic species of Ceratopteris,Ceratopteris chunii and Ceratopteris chingii,are described and illustrated.Phylogenetic analyses reveal that each of the new species form a well-supported clade.C.chunii and C.chingii are similar to Ceratopteris gaudichaudii var.vulgaris and C.pteridoides,respectively,but distinct from their relatives in the stipe,basal pinna of the sterile leaf or subelliptic shape of the fertile leaf,as well as the spore surface.In addition,chromosome studies indicate that C.chunii and C.chingii are both diploid.These findings will help us further understand the origin of Ceratopteris polyploids in Asia.展开更多
In land plants, two distinct generations, gametophyte and sporophyte, alternate to complete the life cycle. Sporophytes undergo meiosis to produce spores, from which gametophytes develop. Gametophytes produce gametes,...In land plants, two distinct generations, gametophyte and sporophyte, alternate to complete the life cycle. Sporophytes undergo meiosis to produce spores, from which gametophytes develop. Gametophytes produce gametes, which participate in fertilization to produce the zygote, the first cell of the sporophyte generation. In addition to this sexual reproduction pathway, some fern species can undergo apospory or apogamy, processes that bypass meiosis or fertilization, respectively, to alternate between the two generations without changing the chromosome number. Apospory is inducible in the laboratory in various fern species simply by altering the sugar level in the media. In sporophytes induced to undergo apospory, sporophyte regeneration is also observed. The ratio of aposporous gametophytes to regenerated sporophytes varies, in a manner consistent with being dependent on sugar level. Whereas the sugar signaling pathway is yet to be elucidated in lower plants, in angiosperms it has been shown to play a regulatory role in controlling essential processes including flowering and embryo development, which give rise to the gametophyte and the next sporophyte generation, respectively. Here, we present evidence for the role of different sugar levels on the balance of apospory and regeneration in the fern Ceratopteris richardii. The demonstration of crosstalk between sugar signaling and the hormone ethylene signaling in angiosperms prompted us to test the effects of this hormone in combination with sugar on apospory vs. regeneration. These results provide insight into how a group of redifferentiating cells determines which generation to become and lay the groundwork for further analysis of this asexual pathway.展开更多
The ultrastructure of the mature egg and fertilization in the fern Ceratopteris thafictroides (L.) Brongn. were observed by transmission electron microscopy. The results revealed that the mature egg possesses an obv...The ultrastructure of the mature egg and fertilization in the fern Ceratopteris thafictroides (L.) Brongn. were observed by transmission electron microscopy. The results revealed that the mature egg possesses an obvious egg membrane at the periphery of the egg. Furthermore, a fertilization pore was identified in the upper egg membrane of the mature egg. The structure of the pore is described for the first time. The fertilization experiment indicated that spermatozoids crowd into the cavity above the egg through the neck canal of the archegonium; however, only one of these can penetrate into the egg through the fertilization pore. Immediately on penetration of the spermatozoid, the egg begins to shrink. The volume of the fertilized egg decreases to almost one-half that of the unfertilized egg. As a result, the protoplasm of the fertilized egg becomes dense and opaque, which may lead to a situation where the organelles of both the egg and the fertilizing spermatozoid become indistinguishable. Simultaneously, abundant vesicles containing concentric membranes or opaque materials appear near the fertilization pore in the cytoplasm of the fertilized egg. These vesicles are considered to act as a barrier that prevents polyspermy. The present study provides a new insight into the ultrastructure of the mature egg and the cytological mechanism of fertilization in ferns.展开更多
基金Supported by National Natural Science Foundation of China(30370098)~~
文摘[ Objective] This study was to analyze the two hydrochemical factors affecting the distribution of Ceratopteris thalictroides, further to provide basis for its habitat protection and population restoration. [ Method ] Twenty two hydrochemical parameters of 22 sampling sites in China's tropical and subtropical zones were respectively averaged for calculating their variation coefficients, of which the two showing significant differences were used for multiple comparisons and correlation analyses via least significant difference and correlation coefficient. E Result ] The correlation coefficients of all the 22 tested hydrochemical parameters varied hugely, but only pH value and conductivity showed significantly differences in two water body (type A and type B). Analysis of correlation presented that pH value were positively correlated with conductivity; further the multiple comparisons showed that the significant difference of pH value was higher than that of conductivity. [Conclusion] With regard to the two hydrochemical parameters showing significant differences, pH value influences the distribution of C. thalictroides more.
基金funded by the Biodiversity Survey and Assessment Project of the Ministry of Ecology and Environment,China(2019HJ2096001006)the Shanghai Municipal Administration of Forestation and City Appearance(grant number G192421)+2 种基金the Biological Resource ProgrammeCAS(ZSZY-001-8)the Strategic Priority Research Program of the Chinese Academy of Sciences(XDA13020603)the Basic Project of Ministry of Science and Technology of China under Grant(2015FY110200).
文摘Understanding how natural hybridization and polyploidizations originate in plants requires identifying potential diploid ancestors.However,cryptic plant species are widespread,particularly in Ceratopteris(Pteridaceae).Identifying Ceratopteris cryptic species with different polyploidy levels is a challenge because Ceratopteris spp.exhibit high degrees of phenotypic plasticity.Here,two new cryptic species of Ceratopteris,Ceratopteris chunii and Ceratopteris chingii,are described and illustrated.Phylogenetic analyses reveal that each of the new species form a well-supported clade.C.chunii and C.chingii are similar to Ceratopteris gaudichaudii var.vulgaris and C.pteridoides,respectively,but distinct from their relatives in the stipe,basal pinna of the sterile leaf or subelliptic shape of the fertile leaf,as well as the spore surface.In addition,chromosome studies indicate that C.chunii and C.chingii are both diploid.These findings will help us further understand the origin of Ceratopteris polyploids in Asia.
文摘In land plants, two distinct generations, gametophyte and sporophyte, alternate to complete the life cycle. Sporophytes undergo meiosis to produce spores, from which gametophytes develop. Gametophytes produce gametes, which participate in fertilization to produce the zygote, the first cell of the sporophyte generation. In addition to this sexual reproduction pathway, some fern species can undergo apospory or apogamy, processes that bypass meiosis or fertilization, respectively, to alternate between the two generations without changing the chromosome number. Apospory is inducible in the laboratory in various fern species simply by altering the sugar level in the media. In sporophytes induced to undergo apospory, sporophyte regeneration is also observed. The ratio of aposporous gametophytes to regenerated sporophytes varies, in a manner consistent with being dependent on sugar level. Whereas the sugar signaling pathway is yet to be elucidated in lower plants, in angiosperms it has been shown to play a regulatory role in controlling essential processes including flowering and embryo development, which give rise to the gametophyte and the next sporophyte generation, respectively. Here, we present evidence for the role of different sugar levels on the balance of apospory and regeneration in the fern Ceratopteris richardii. The demonstration of crosstalk between sugar signaling and the hormone ethylene signaling in angiosperms prompted us to test the effects of this hormone in combination with sugar on apospory vs. regeneration. These results provide insight into how a group of redifferentiating cells determines which generation to become and lay the groundwork for further analysis of this asexual pathway.
基金Supported by the National Natural Science Foundation of China (30670128).
文摘The ultrastructure of the mature egg and fertilization in the fern Ceratopteris thafictroides (L.) Brongn. were observed by transmission electron microscopy. The results revealed that the mature egg possesses an obvious egg membrane at the periphery of the egg. Furthermore, a fertilization pore was identified in the upper egg membrane of the mature egg. The structure of the pore is described for the first time. The fertilization experiment indicated that spermatozoids crowd into the cavity above the egg through the neck canal of the archegonium; however, only one of these can penetrate into the egg through the fertilization pore. Immediately on penetration of the spermatozoid, the egg begins to shrink. The volume of the fertilized egg decreases to almost one-half that of the unfertilized egg. As a result, the protoplasm of the fertilized egg becomes dense and opaque, which may lead to a situation where the organelles of both the egg and the fertilizing spermatozoid become indistinguishable. Simultaneously, abundant vesicles containing concentric membranes or opaque materials appear near the fertilization pore in the cytoplasm of the fertilized egg. These vesicles are considered to act as a barrier that prevents polyspermy. The present study provides a new insight into the ultrastructure of the mature egg and the cytological mechanism of fertilization in ferns.