期刊文献+
共找到5,865篇文章
< 1 2 250 >
每页显示 20 50 100
Time-dependent changes of glial fibriliary acidic protein and cytosolic phospholipase A2 in hippocampal area of focal cerebral ischemia/reperfusion in rats
1
作者 Qingzhou Cheng Xingui Ming 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第4期321-324,共4页
BACKGROUND: Interaction between astrocyte and neuron may two-dimensionally influence on ischemic injury; however, glial fibriliary acidic protein (GFAP) and cytosolic phospholipase A2 (cPLA2) are both important m... BACKGROUND: Interaction between astrocyte and neuron may two-dimensionally influence on ischemic injury; however, glial fibriliary acidic protein (GFAP) and cytosolic phospholipase A2 (cPLA2) are both important markers to reflect changes of astrocyte and neuron after cerebral ischemia, respectively. OBJECTIVE: To observe the changes of GFAP and positive cPLA2 cells in hippocampal area of model rats with focal cerebral ischemia in various phases of cerebral ischemia/reperfusion. DESIGN : Randomized contrast observation SETTING: Department of Basic Medical Science of Human Anatomy and Histology & Embryology, Medical College of Wuhan Polytechnic University; Faculty Medical College of Wuhan University. MATERIALS: The experiment was carried out in the Department of Basic Medical Science, Medical College of Wuhan Industry College from May to June 2004. A total of 28 healthy SD rats of either gender and weighing 200-250 g were provided by Animal Department of Medical College of Jianghan University. METHODS: All 28 rats were randomly divided into 7 groups, including sham operation group, 2-, 6-, 12-, 24- and 48-reperfusion groups, and triphenyltetrazolium chloride (TTC) group, with 4 in each group. Two hours after ischemia, ischemia/reperfusion models were established in left middle cerebral artery (MCA); common carotid artery was ligated and line cork was inserted into it with the depth of (1.8±0.5) cm. Rats in sham operation group were inserted with the depth of 1.0 cm, and other operations were as the same as those in 2-hour ischemia/reperfusion groups. Models in TTC group were established as the same as those in 2-hour ischemia/24-hour reperfusion group, and they were used to evaluate the therapeutic effect. Changes of GFAP and cPLA2 in hippocampal area in various phases were detected with immunohisto- chemical method. MAIN OUTCOME MEASURES : Changes of GFAP and positive cPLA2 cells in hippocampal area of rats with focal cerebral ischemia in various phases of ischemia/reperfusion. RESULTS: All 28 rats were involved in the final analysis without any loss. (1) Animal models successfully showed the effect of focal cerebral ischemia. (2) Changes of GFAP and cPLA2 in hippocampal area in various phases: Two hours after ischemia/reperfusion, changes of GFAP and cPLA2 were increased gradually, reached at peak at 24 hours, and decreased gradually. CONCLUSION : Courses of GFAP and cPLA2 are changed at the onset of focal cerebral ischemia, and this suggests that both of them participate in injury or protection of brain tissue of focal cerebral ischemia. 展开更多
关键词 GFAP Time-dependent changes of glial fibriliary acidic protein and cytosolic phospholipase A2 in hippocampal area of focal cerebral ischemia/reperfusion in rats area
下载PDF
Electro-acupuncture for STAT3 expression and nuclear translocation in hippocampal tissues of rats following cerebral ischemia/reperfusion
2
作者 Lihong Kong1, Xiaoling Zeng1, Guojie Sun1, Shenghong Liu2 1Staff Room of Acupuncture and Moxibustion, Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine, Wuhan 430061, Hubei Province, China 2Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430061, Hubei Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第8期717-720,共4页
BACKGROUND: It has been found in recent years that STAT3 widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release... BACKGROUND: It has been found in recent years that STAT3 widely distributes in nervous system, including hippocampal CA1-3 region, dentate gyrus and cerebral neocortex, etc. Ischemic brain injury can cause the release of some cytokines and growth factors, while electro-acupuncture may have multi-level, multi-channel and multi-target protective and interventional effects on ischemic brain injury. OBJECTIVE: To observe the effects of electro-acupuncture on STAT3 expression and nuclear translocation in hippocampal CA1 region of rat models of brain ischemia/reperfusion. DESIGN: Randomized and controlled observation. SETTING: Staff Room of Acupuncture and Moxibustion, Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine; Tongji Medical College, Huazhong University of Science and Technology. MATERIALS: Seventy-two healthy SD rats, of clean degree and either gender, weighing (200±20) g, were provided by the Experimental Animal Center of Hubei College of Traditional Chinese Medicine. STAT3 monoclonal antibody was purchased from Santa Cruz Company, USA, and G-6805 electro-acupuncture instrument was purchased from Shanghai Medical Electronic Instruments Factory. METHODS: This experiment was carried out in the comprehensive laboratory of Department of Acupuncture and Bone Injury, Hubei College of Traditional Chinese Medicine between September 2005 and February 2006. Seventy-two rats were randomly divided into 4 groups: ① control group(n =6): Untouched. ② Sham-operation group (n =18): Artery was isolated, but without inserting thread bolt.③ Model group (n =24): Rat models of local brain ischemia/reperfusion were established with modified suture occlusion. ④Electro-acupuncture group (n =24): Dazhui and bilateral Neiguan points were selected for electro-acupuncture treatment. No. 28 acupuncture needle of 3.33 cm was used in the treatment. A G-6085 electro-acupuncture instrument with continuous wave, frequency of 120 times/min, intensity of 1 mA, 30 min/time, was used. Acupuncture was conducted firstly at ischemia/reperfusion 3 hours, then once every 12 hours. STAT3 positive nuclear translocation in hippocampal CA1 region of rats was observed with immunohistochemical method at 24, 48 and 72 hours after brain ishcemia/reperfusion, and then STAT3 positive cells were counted. MAIN OUTCOME MEASURES: STAT3 positive cells and nuclear translocation in hippocampal CA1 region of rats in each group. RESULTS: All the 72 rats were involved in the result analysis. ①In the control group and sham-operation group, STAT3 positive cells with light cytoplasm and nucleus were decreased , and nuclear translocation was not found. ② In the model group, STAT3 positive cells were mostly found in the cytoplasm of the hippocampal CA1 region at the ischemic side of rats after ischemia/reperfusion 24 hours. They were significantly more than those in the sham-operation group and control group [(18.00±2.68), (9.00±1.35), (8.00±1.22) cells/ mm2, P < 0.01], but cells with nuclear reaction were fewer; At ischemia/reperfusion 48 and 72 hours, STAT3 positive cells were increased, and they were significantly more than those of sham-operation group [(25.00±3.23), (35.00±3.52) cells/mm2, (13.00±1.93), (12.00±1.24) cells/mm2, P < 0.01]. Positive cells with nuclear reaction were found dark-stained. ③At ischemia/reperfusion 24, 48 and 72 hours, STAT3 positive cells were strongly expressed in hippocampal CA1 region at ischemic side of rats of electro-acupuncture group, and they were significantly more than those of model group [(25±3.52), (50±6.31), (75±8.09) cells/mm2, P < 0.01]. STAT3 positive cells were gradually enhanced with time, and considerable STAT3 nuclear positive reaction cells were found. CONCLUSION: Electro-acupuncture can activate STAT3 protein expression in hippocampal tissue of rats with local brain ischemia/reperfusion, promote STAT3 nuclear translocation and function its neuroprotective effect. 展开更多
关键词 STAT Electro-acupuncture for STAT3 expression and nuclear translocation in hippocampal tissues of rats following cerebral ischemia/reperfusion
下载PDF
Potential targets for protecting against hippocampal cell apoptosis after transient cerebral ischemiareperfusion injury in aged rats 被引量:9
3
作者 Xiangyu Ji Li'na Zhang +5 位作者 Ran Liu Yingzhi Liu Jianfang Song He Dong Yanfang Jia Zangong Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第11期1122-1128,共7页
Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial pro... Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial proteins in hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats using a comparative proteomics strategy. Our exper-imental results show that the aged rat brain is sensitive to ischemia-reperfusion injury and that transient ischemia led to cell apoptosis in the hippocampus and changes in memory and cognition of aged rats. Differential proteomics analysis suggested that this phenomenon may be mediated by mitochondrial proteins associated with energy metabolism and apoptosis in aged rats. This study provides potential drug targets for the treatment of transient cerebral isch-emia-reperfusion injury. 展开更多
关键词 nerve regeneration cerebral ischemia reperfusion injury HIPPOCAMPUS cognitivefunction apoptosis MITOCHONDRIA differential proteomics rats aged neural regeneration
下载PDF
Pretreatment with scutellaria baicalensis stem-leaf total flavonoid protects against cerebral ischemia/reperfusion injury in hippocampal neurons 被引量:8
4
作者 Xiangyu Kong Wei Kong +4 位作者 Guangxin Miao Shumin Zhao Meng Chen Xiaoying Zheng Jiangtao Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第23期2066-2073,共8页
Previous experimental studies have shown that cerebral infarction can be effectively reduced following treatment with scutellaria baicalensis stem-leaf total flavonoid (SSTF). However, the mechanism of action of SST... Previous experimental studies have shown that cerebral infarction can be effectively reduced following treatment with scutellaria baicalensis stem-leaf total flavonoid (SSTF). However, the mechanism of action of SSTF as a preventive drug to treat cerebral infarction remains unclear. In this study, Sprague-Dawley rats were pretreated with 50, 100, 200 mg/kg SSTF via intragastric ad- ministration for 1 week prior to the establishment of focal cerebral ischemia/reperfusion injury. The results showed that pretreatment with SSTF effectively improved neurological function, reduced brain water content and the permeability of blood vessels, ameliorated ischemia-induced morphology changes in hippocampal microvessels, down-regulated Fas and FasL protein expression, elevated the activity of superoxide dismutase and glutathione peroxidase, and decreased malondialdehyde content. In contrast to low-dose SSTF pretreatment, the above changes were most obvious after pretreatment with moderateand high-doses of SSTF. Experimental findings indicate that SSTF pretreatment can exert protective effects on the brain against cerebral ischemia/reperfusion injury. The underlying mechanisms may involve reducing brain water content, increasing microvascular recanalization, inhibiting the apoptosis of hippocampal neurons, and attenuating free radical damage. 展开更多
关键词 nerve regeneration scutellaria baicalensis stem-leaf total flavonoid PRETREATMENT cerebral ischemia/reperfusion hippocampus apoptosis vascular permeability free radicals neural regeneration
下载PDF
Effects of Buyang Huanwu decoction on cell proliferation and differentiation in the hippocampal dentate gyrus of aged rats following cerebral ischemia/reperfusion 被引量:5
5
作者 Jianfeng Gao Fenghua Lu Changlian Zhu 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第5期390-395,共6页
BACKGROUND: The mobilization of endogenous stem cells is an effective way to promote repair following ischemic brain damage. Buyang Huanwu decoction (BHD) can effectively improve cerebral blood flow and protect aga... BACKGROUND: The mobilization of endogenous stem cells is an effective way to promote repair following ischemic brain damage. Buyang Huanwu decoction (BHD) can effectively improve cerebral blood flow and protect against cerebral ischemia/reperfusion damage. OBJECTIVE: To study the effects of BHD on cell proliferation and differentiation in the hippocampal dentate gyrus of rats following cerebral infarction, to investigate the protective effects of BHD against cerebral infarction, and to analyze the dose-effect relationship. DESIGN, TIME AND SETTING: This randomized, controlled, animal study was performed at the Laboratory of Department of Physiology, Henan College of Traditional Chinese Medicine, China from June 2007 to February 2008. MATERIALS: A total of 36 male, Sprague Dawley rats, aged 20-21 months, were equally and randomly assigned to the following groups: sham operation, model control, and nimodipine, as well as high-dose, moderate-dose, and low-dose BHD. BHD was composed of milkvetch root, Chinese angelica, red peony root, earthworm, peach seed, safflower, and Szechwan Iovage rhizome, which were provided by the Outpatient Department, Henan College of Traditional Chinese Medicine, China. METHODS: The Chinese medicinal ingredients described above were decocted. The external carotid artery was ligated in rats from the sham operation group. Rat models of focal cerebral infarction were established by middle cerebral artery occlusion in the model control and nimodipine groups, as well as the high-dose, moderate-dose, and low-dose BHD groups. The drugs were administered by gavage 5 days, as well as 2 hours, prior to model induction. Rats in the nimodipine group were daily administered a 6 mg/kg nimodipine suspension by gavage. Rats in the high-dose, moderate-dose, and low-dose BHD groups were administered daily 26, 13, and 6.5 g/kg BHD, respectively. Rats in the sham operation and model control groups were treated with an equal volume of saline. MAIN OUTCOME MEASURES: The effects of BHD on neurological dysfunction score, brain water content, cell proliferation and differentiation in the hippocampal dentate gyrus, and pathological changes in the ischemic brain hemisphere were measured in cerebral infarction rats. RESULTS: Compared with the sham operation group, the neurological dysfunction score, brain water content, number of BrdU-positive cells, BrdU/NeuN-positive cells, and BrdU/GFAP-positive cells in the hippocampal dentate gyrus significantly increased in the model control group (P 〈 0.01 ). Compared with the model control group, neurological dysfunction score and brain water content were significantly decreased (P 〈 0.01 or 0.05), as were the number of BrdU-positive and BrdU/NeuN-positive cells (P 〈 0.01 or 0.05). The number of BrdU/GFAP-positive cells was significantly reduced (P 〈 0.05) in the nimodipine group, high-dose, moderate-dose, and low-dose BHD groups. Compared with the nimodipine group, the neurological dysfunction score was significantly reduced in the moderate-dose BHD group (P 〈 0.05). However, the number of BrdU-positive cells was significantly increased in the rat hippocampal dentate gyrus in the high-dose and moderate-dose BHD groups (P 〈 0.01 or 0.05). The following was determined by microscopy: slightly disarranged neural cells, mild vascular dilatation, inflammatory cell infiltration, and light tissue edema were observed in the nimodipine group; inflammatory celt infiltration was reduced in the low-dose BHD group; cerebral edema and inflammatory cell infiltration were significantly reduced in the high-dose and in the moderate-dose BHD group. Electron microscopy revealed lipofuscin, slightly swollen mitochondria, and normal rough endoplasmic reticulum in the high-dose and moderate-dose BHD groups. Improvement was best in the moderate-dose BHD group. CONCLUSION: Cerebral ischemia activated proliferation of neural stem cells in the rat hippocampal dentate gyrus. The actions of BHD against cerebral ischemia/reperfusion damage correlated with proliferation and differentiation of neural stem cells in the hippocampal dentate gyrus. A moderate-dose of BHD resulted in the most effective outcome. 展开更多
关键词 Buyang Huanwu decoction cerebral ischemia/reperfusion neural stem cells PROLIFERATION DIFFERENTIATION
下载PDF
Effects of mild hypothermia on the expression of microtubule-associated protein 2 in neurons of the hippocampal dentate gyrus in a rat model of cerebral ischemia/reperfusion 被引量:3
6
作者 Qian Yang Feng Zheng Jiami Wu 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第12期1352-1355,共4页
BACKGROUND: It is widely accepted that mild hypothermia can protect against injury to cerebral ischemia/reperfusion. OBJECTIVE: To observe the effects of mild hypothermia on microtubule-associated protein 2 (MAP2)... BACKGROUND: It is widely accepted that mild hypothermia can protect against injury to cerebral ischemia/reperfusion. OBJECTIVE: To observe the effects of mild hypothermia on microtubule-associated protein 2 (MAP2) expression in the hippocampal dentate gyms in rats following cerebral ischemia/reperfusion. Also, to study neuronal ultrastmctural changes in the dentate gyms to investigate the mechanism of the protection against injury to cerebral ischemia/reperfusion conferred by mild hypothermia. DESIGN, TIME AND SETTING: This randomized grouping, neural cell morphology trial was performed at the Laboratory Animal Center of Yijishan Hospital between March and June 2007. MATERIALS: Eighty-five healthy male Sprague Dawley rats were randomly allocated to three groups: mild hypothermia (n = 40), normothermia (n = 40), and sham-operated (n = 5). METHODS: Cerebral ischemia/reperfusion injury was induced by the suture method in the mild hypothermia and normothermia groups, with a threading depth of 180.5 mm. In the sham-operated group, the suture was inserted 15 mm, with no vascular ligafion, and was followed by reperfusion 2 hours later. In the sham-operated and normothermia groups, the rat rectal temperature was maintained at 36-37 ℃ ; in the mild hypothermia group, it was controlled at 32-33 ℃. MAIN OUTCOME MEASURES: The hippocampal dentate gyms was serially sectioned for hematoxylin-eosin staining and MAP2 immunohistochemistry. Ultrastructural changes and the MAP2 absorbance value of the hippocampal dentate gyms were examined by transmission electron microscopy. RESULTS: The sham-operated group exhibited approximately normal ultrastructure of neurons in the bilateral hippocampal dentate gyms. In the normothermia group, ischemic hippocampal dentate gyms neurons were found with markedly fewer normal mitochondria, greatly proliferated rough endoplasmic reticulum, and a swollen and dysmorphic Golgi. In the mild hypothermia group, at each corresponding time point, these abnormal changes were noticeably alleviated. The number of necrotic mitochondria, as well as the degree of degeneration, was obviously reduced compared with the normothermia group. At days 6, 8 and 10 following reperfusion, the normothermia group exhibited lower neurological function scores than the mild hypothermia group (P 〈 0.05). In the normothermia group, the absorbance value of MAP2 expression in the ischemic hippocampal dentate gyms was significantly decreased compared with the sham-operated group (P 〈 0.01 ), was slightly increased at 4 days, and reached a peak on day 8. The mild hypothermia group showed an absorbance value of MAP2 expression in the ischemic hippocampal dentate gyms similar to the normothermia group, but it reached a peak on day 6. On days 1, 2, 4 and 6 following repeffusion, MAP2 expression was lower in the mild hypothermia group than in the sham-operated group, but it was higher than the normothermia group (P 〈 0.05). CONCLUSION: Mild hypothermia applied in early ischemia can alleviate brain injury. This may be due to an enhancement of MAP2 expression. 展开更多
关键词 cerebral ischemia/reperfusion mild hypothermia RATS
下载PDF
Diffusion tensor imaging of the hippocampus reflects the severity of hippocampal injury induced by global cerebral ischemia/reperfusion injury 被引量:3
7
作者 Wen-Zhu Wang Xu Liu +2 位作者 Zheng-Yi Yang Yi-Zheng Wang Hai-Tao Lu 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第4期838-844,共7页
At present,predicting the severity of brain injury caused by global cerebral ischemia/reperfusion injury(GCI/RI)is a clinical problem.After such an injury,clinical indicators that can directly reflect neurological dys... At present,predicting the severity of brain injury caused by global cerebral ischemia/reperfusion injury(GCI/RI)is a clinical problem.After such an injury,clinical indicators that can directly reflect neurological dysfunction are lacking.The change in hippocampal microstructure is the key to memory formation and consolidation.Diffusion tensor imaging is a highly sensitive tool for visualizing injury to hippocampal microstructure.Although hippocampal microstructure,brain-derived neurotrophic factor(BDNF),and tropomyosin-related kinase B(Trk B)levels are closely related to nerve injury and the repair process after GCI/RI,whether these indicators can reflect the severity of such hippocampal injury remains unknown.To address this issue,we established rat models of GCI/RI using the four-vessel occlusion method.Diffusion tensor imaging parameters,BDNF,and Trk B levels were correlated with modified neurological severity scores.The results revealed that after GCI/RI,while neurological function was not related to BDNF and Trk B levels,it was related to hippocampal fractional anisotropy.These findings suggest that hippocampal fractional anisotropy can reflect the severity of hippocampal injury after global GCI/RI.The study was approved by the Institutional Animal Care and Use Committee of Capital Medical University,China(approval No.AEEI-2015-139)on November 9,2015. 展开更多
关键词 brain-derived neurotrophic factor diffusion tensor imaging fractional anisotropy value global cerebral ischemia/reperfusion injury HIPPOCAMPUS Trk B
下载PDF
Neuroprotective effects of cromakalim on cerebral ischemia-reperfusion injury in rats Correlation with hippocampal metabotropic glutamate receptor 1 alpha and glutamate transporter 1 被引量:2
8
作者 Shilei Wang Junchao Liu Qingxian Chang Yu Li, Yan Jiang Shiduan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第9期678-682,共5页
BACKGROUND:Studies have reported that potassium channel openers exhibit a protective effect on cerebral ischemia-reperfusion injury and inhibit glutamate excitotoxicity in rats.However,the effects of the glutamate re... BACKGROUND:Studies have reported that potassium channel openers exhibit a protective effect on cerebral ischemia-reperfusion injury and inhibit glutamate excitotoxicity in rats.However,the effects of the glutamate receptor 1α and glutamate transporter 1 remain poorly understood.OBJECTIVE:To investigate the prophylactic use of the adenosine triphosphate-sensitive potassium channel opener cromakalim on neurological function and cerebral infarct size,as well as glutamate receptor 1α and glutamate transporter 1 expression,in rats with cerebral ischemia-reperfusion injury,and to explore action mechanisms underlying reduced glutamate excitotoxicity and neuroprotection in rats.DESIGN,TIME AND SETTING:Randomized,controlled,animal experiment was performed at the Brain Institute,Qingdao University Medical College,Between July 2008 and April 2009.MATERIALS:Cromakalim was purchased from Sigma,USA; rabbit anti-glutamate receptor 1α polyclonal antibody was offered by Wuhan Boster,China; rabbit anti-glutamate transporter 1 polyclonal antibody was offered by Santa Cruz Biotechnology,USA.METHODS:Sixty male,Wistar rats,aged 6 months,were randomly assigned to three groups (n =20):sham-surgery,model,and cromakalim.Intraluminal thread methods were used to establish middle cerebral artery occlusion in rats from the model and cromakalim groups.Rats from the sham-surgery group were subjected to exposed common carotid artery,external carotid artery,and internal carotid artery,without occlusion.Cromakalim (10 mg/kg) was administered 30 minutes prior to middle cerebral artery occlusion,but there was no intervention in the model and sham-surgery groups.MAIN OUTCOME MEASURES:At 24 hours post-surgery,neurological behavioral functions were evaluated using Bederson's test,cerebral infarction volume was determined following tetrazolium chloride staining,and glutamate receptor 1a and glutamate transporter 1 expressions were detected using immunohistochemistry.RESULTS:Following cerebral ischemia-reperfusion injury,neurological behavioral malfunctions were obvious in all mice.Focal cerebral infarction was detected in ischemic hemispheres,glutamate receptor 1α expression increased,and glutamate transporter 1 expression decreased in the ischemic hemisphere (P〈 0.05).Compared with the model group,neurological behavioral functions significantly improved,cerebral infarction volume was significantly reduced (P〈 0.05),glutamate receptor 1α expression was significantly decreased,and glutamate transporter 1 expression was increased in the cromakalim group (P 〈 0.05).CONCLUSION:Improved neurological function and reduced cerebral infarction volume in rats through the preventive use of cromakalim could be related to decreased glutamate receptor 1α expression and enhanced glutamate transporter 1 expression. 展开更多
关键词 cerebral ischemia-reperfusion CROMAKALIM glutamate receptor glutamate transporter 1
下载PDF
Neuroprotective effects of rutaecarpine on cerebral ischemia reperfusion injury 被引量:20
9
作者 Chunlin Yan Ji Zhang +2 位作者 Shu Wang Guiping Xue Yong Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第22期2030-2038,共9页
Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia repeffusion injury. Because both cardiovascular and cerebrovascular diseases ar... Rutaecarpine, an active component of the traditional Chinese medicine Tetradium ruticarpum, has been shown to improve myocardial ischemia repeffusion injury. Because both cardiovascular and cerebrovascular diseases are forms of ischemic vascular disease, they are closely related. We hypothesized that rutaecarpine also has neuroprotective effects on cerebral ischemia reperfusion injury. A cerebral ischemia reperfusion model was established after 84, 252 and 504 pg/kg rutae- carpine were given to mice via intrapedtoneal injection, daily for 7 days. Results of the step through test, 2,3,5-triphenyl tetrazolium chloride dyeing and oxidative stress indicators showed that rutae- carpine could improve learning and memory ability, neurological symptoms and reduce infarction volume and cerebral water content in mice with cerebral ischemia reperfusion injury. Rutaecarpine could significantly decrease the malondialdehyde content and increase the activities of superoxide dismutase and glutathione peroxidase in mouse brain. Therefore, rutaecarpine could improve neu- rological function following injury induced by cerebral ischemia reperfusion, and the mechanism of this improvement may be associated with oxidative stress. These results verify that rutaecarpine has neuroprotective effects on cerebral ischemia reperfusion in mice. 展开更多
关键词 neural regeneration traditional Chinese medicine RUTAECARPINE cerebral ischemia reperfusion learning and memory infarct volume free radical glutathione peroxidase superoxide dismutase MALONDIALDEHYDE grants-supported paper NEUROREGENERATION
下载PDF
Effects of Lipoxin A4 Pretreatment on Cognitive Function of Aged Rats after Global Cerebral Ischemia Reperfusion 被引量:5
10
作者 Hui-sheng WU Pei-pei GUO +5 位作者 Zhao JIN Xin-yi LI Xin YANG Jan-juan KE Yan-lin WANG Xiao-bo FENG 《Current Medical Science》 SCIE CAS 2018年第4期666-671,共6页
The aim of the present study was to investigate the effect of lipoxin A4 (LXA4) pretreatment on cognitive function of aged rats after global cerebral ischemia reperfusion, and to explore its possible mechanism. Thir... The aim of the present study was to investigate the effect of lipoxin A4 (LXA4) pretreatment on cognitive function of aged rats after global cerebral ischemia reperfusion, and to explore its possible mechanism. Thirty-six aged male Sprague-Dawley rats were randomly divided into three groups (n=12 each): sham-operation group (S group), global cerebral ischemia reperfusion group (I/R group) and LXA4-pretreatment group (L group). The rat model of global cerebral ischemia reperfusion was established by occlusion of the bilateral common carotid artery with hypotension. The cognitive function of rats was determined by a step-down type passive avoidance test and Morris Water Maze test on the third day after reperfusion. Rats were sacrificed after Water Maze test and the pathological changes ofhippocampal CA1 region were observed and the related inflammatory mediators were determined. As compared with S group, the escape latency in I/R group was prolonged from the first day to the fifth day, while that in L group was prolonged from the first day to the third day. The retention time in I/R group and L group in the first quadrant was shortened. The reaction time, frequency of reaction mistake and frequency of escape mistake in I/R group increased, and the latent period shortened. The frequency of escape mistake in L group increased, and the damage in the hippocampal CAI region of I/R group and L group was obvious. The levels of S-10013, TNF-α, IL-1β, IL-10 and NF-κB in I/R group and L group increased. As compared with I/R group, the escape latency in L group was shortened from the first day to the fifth day, and the retention time in the first quadrant prolonged. The reaction time, frequency of reaction mistake and frequency of escape mistake in L group decreased, and the latent period prolonged. The damage in the hippocampal CA1 region of L group was alleviated as well. The levels of S-10013, TNF-α, IL-1β and NF-κB in L group decreased, and those of IL-10 increased. It can be concluded that LXA4 pretreatment can improve the cognitive function in aged rats after global cerebral ischemia reperfusion probably by inhibiting the inflammatory reaction. 展开更多
关键词 LIPOXIN cerebral ischemia reperfusion PRETREATMENT cognitive function
下载PDF
Effects of “Nourishing Liver and Kidney” Acupuncture Therapy on Expression of Brain Derived Neurotrophic Factor and Synaptophysin after Cerebral Ischemia Reperfusion in Rats 被引量:11
11
作者 夏文广 郑婵娟 +1 位作者 张璇 王娟 《Journal of Huazhong University of Science and Technology(Medical Sciences)》 SCIE CAS 2017年第2期271-278,共8页
The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(... The aim of the present study was to investigate the effect of "nourishing liver and kidney" acupuncture therapy on motor and cognitive deficits,and the underlying mechanism following cerebral ischemia-reperfusion(I/R) via increasing the expression of brain derived neurotrophic factor(BDNF) and synaptophysin(SYN) in the hippocampus.Healthy adult male SD rats were randomly divided into sham operation group(n=51),model group(n=51),acupuncture group(n=51) and acupuncture control group(n=51).The middle cerebral I/R model was established.Acupunctures were performed in the acupuncture group and acupuncture control group at acupoints of Taixi(K103),Taichong(ST09) of both sides,for 30 min once daily every morning.The animals in the sham operation group and model group were conventionally fed in the cage,without any intervention therapy.The rats of each group were assessed with modified neurological severity scores(m NSS).The expression of BDNF and SYN in the hippocampus was detected by immunohistochemical SP method and the synaptic structure in hippocampus area was assessed morphologically and quantitatively at the 3rd,7th and 14 th day.The Morris water Maze(MWM) test was used to evaluate the rats' learning and memory abilities on the 15 th day after acupuncture.The animals in the acupuncture control group and sham operation group presented no neurological deficit.In the acupuncture group,the nerve functional recovery was significantly better than that in the model group at the 7th and 14 th day after modeling.The average MWM escape latency in the acupuncture group was shorter than that in the model group at the 3rd,4th and 5th day.The number of crossings of the platform quadrant in the acupuncture group was significantly more than that in the model group.At the each time point,the expression levels of BDNF and SYN in the hippocampal regions increased significantly in the model group as compared with the sham operation group and the acupuncture control group.In the acupuncture group,the expression levels of BDNF at the 7th and 14 th day increased more significantly than those in the model group.In the acupuncture group,the expression levels of SYN at the each time point increased more significantly than those in the model group.The post-synaptic density(PSD) was significantly increased and the synapse cleft width was narrowed in the acupuncture group as compared with other groups.The synaptic curvatures were improved obviously in the acupuncture group in contrast to the model group.It was concluded that the "nourishing liver and kidney" acupuncture therapy has positive effects on behavioral recovery,as well as learning and memory abilities,probably by promoting the expression of BDNF and SYN,and synaptic structure reconstruction in the ipsilateral hippocampus after I/R in rats.The "nourishing liver and kidney" acupuncture therapy can promote the functional recovery in rats after cerebral ischemia injury. 展开更多
关键词 acupuncture cerebral ischemia reperfusion brain derived neurotrophic factor synaptophysin
下载PDF
Upregulated expression of S100A8 in mice brain after focal cerebral ischemia reperfusion
12
作者 Peng Sun Qian Li +2 位作者 Qing Zhang Li Xu Ji-yuan Han 《World Journal of Emergency Medicine》 CAS 2013年第3期210-214,共5页
BACKGROUND:Recent studies have showed that S100A8 has been implicated in the pathobiology of inflammatory disorders,and that cerebral ischemia reperfusion(l/R) rapidly activates inflammation responses via Toll-like re... BACKGROUND:Recent studies have showed that S100A8 has been implicated in the pathobiology of inflammatory disorders,and that cerebral ischemia reperfusion(l/R) rapidly activates inflammation responses via Toll-like receptor 4(TLR4).This study aimed to explore the expression of S100A8 and the relationship between S100A8 and TLR4 in focal cerebral ischemia reperfusion injury.METHODS:C3H/HeJ mice(n=30) and C3H/HeN mice(n=30) were divided randomly into a C3H/HeJ model group(n=18),a C3H/HeJ control group(n=12),a C3H/HeN model group(n=18),and a C3H/HeN control group(n=12).Middle cerebral artery l/R model in mice was produced using a thread embolism method.The brains of the mice were collected after ischemia for 1 hour and reperfusion for 12 hours.Stroke outcome was evaluated by determination of infarct volume and assessment of neurological impairment scores.Brain injury after cerebral l/R was observed by an optical microscope after TTC and HE dyeing.The immunofluorescence technique and real time PCR were used to test the expression level of S100A8 in brain damage.RESULTS:Compared with C3H/HeN mice,TLR4-deficient mice(C3H/HeJ) had lower infarct volumes and better outcomes in neurological tests.The levels of S100A8 increased sharply in the brains of mice after l/R injury.In addition,mice that lacked TLR4(C3H/HeJ) had lower expression of l/R-induced S100A8 than C3H/HeN mice in the model group,indicating that a close relationship might exist between the levels of S100A8 and TLR4.CONCLUSION:S100A8 interaction with TLR4 might be involved in brain damage and in inflammation triggered by l/R injury. 展开更多
关键词 S100A8 Toll-like receptor 4 cerebral ischemia reperfusion INFLAMMATION
下载PDF
Effects of phycocyanin on apoptosis and expression of superoxide dismutase in cerebral ischemia reperfusion injury
13
作者 Meizeng Zhang Lihua Wang Yunliang Guo 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第2期140-142,共3页
BACKGROUND : The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the path... BACKGROUND : The application of exogenous antioxidant is always the focus in the prevention and treatment of cerebral ischemia. Phycocyanin has the effects against oxidation and inflammation, but its role in the pathophysiological process of cerebral ischemia reperfusion injury still needs further investigation. OBJECTIVE: To observe the effects of phycocyanin on the expression of superoxide dismutase (SOD) apoptosis and form of the nerve cells in rats after cerebral ischemia reperfusion injury. DESIGN: A randomized control animal experiment SETTING : Institute of Cerebrovascular Disease, Medical School Hospital of Qingdao University MATERIALS: Fifty-two healthy adult male Wistar rats of clean degree, weighing 220-260 g, were used. Phycocyanin was provided by the Institute of Oceanology, Chinese Academy of Sciences. METHODS: The experiments were carried out in Shangdong Key Laboratory for Prevention and Treatment of Brain Diseases from May to December 2005. ① All the rats were divided into three groups according to the method of random number table: sham-operated group (n=4), control group (n=24) and treatment group (n=24). Models of middle cerebral artery occlusion/reperfusion (MCAO/R) were established by the introduction of thread through external and internal carotid arteries in the control group and treatment group. After 1-hour ischemia and 2-hour reperfusion, rats in the treatment group were administrated with gastric perfusion of phy- cocyanin suspension (0.1 mg/g), and those in the control group were given saline of the same volume, and no treatment was given to the rats in the sham-operated group. ②The samples were removed and observed at ischemia for 1 hour and reperfusion for 6 and 12 hours and 1, 3, 7 and 14 days respectively in the control group and treatment group, 4 rats for each time point, and those were removed at 1 day postoperatively in the sham-operated group. Forms of the nerve cells were observed with toluidine blue staining. Apoptosis after cerebral ischemia reperfusion was detected with TUNEL technique. SOD expression was detected with immunohistochemical technique.③ The intergroup difference was compared with the ttest. MAIN OUTCOME MEASURES: The apoptosis of the nerve cells and SOD expression were mainly observed in each group. RESULTS: Finally, 52 rats were involved in the analysis of results. ① Number of apoptotic cells: In the sham-operated group, a few apoptotic cells could be observed in brain tissue. The apoptotic cells at each time point in the control group and treatment group were obviously more than those in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of apoptotic cells at 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 6 hours, 7 and 14 days were similar to those in the control group. ② Number of SOD positive cells: In the sham-operated group, there was weak expression of SOD in brain tissue, and the positive cells were extremely few, the positive cells at each time point were significantly more in the control group and treatment group than in the sham-operated group (P 〈 0.05). In the treatment group, the numbers of positive cells at 6 and 12 hours, 1 and 3 days after reperfusion were significantly fewer than those in the control group, and those at 7-14 days were similar to those in the control group. ③ Cellular forms: In the control group, the karyopyknosis occurred in the nerve cells, which were irregularly distributed, nucleolus disappeared, and some scattered cell fragments were observed. The forms of the nerve cells in the treatment group were generally normal. CONCLUSION : Phycocyanin plays a neuroprotective role in cerebral ischemia reperfusion injury by activating the SOD expression and inhibiting apoptosis. 展开更多
关键词 Effects of phycocyanin on apoptosis and expression of superoxide dismutase in cerebral ischemia reperfusion injury
下载PDF
Regulation of extracellular signal-regulated kinase 1/2 influences hippocampal neuronal survival in a rat model of diabetic cerebral ischemia 被引量:10
14
作者 Yaning Zhao Jianmin Li +4 位作者 Qiqun Tang Pan Zhang Liwei Jing Changxiang Chen Shuxing Li 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第7期749-756,共8页
Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from inju... Activation of extracellular signal-regulated kinase 1/2 has been demonstrated in acute brain ischemia. We hypothesized that activated extracellular signal-regulated kinase 1/2 can protect hippocampal neurons from injury in a diabetic model after cerebral ischemia/reperfusion. In this study, transient whole-brain ischemia was induced by four-vessel occlusion in normal and diabetic rats, and extracellular signal-regulated kinase 1/2 inhibitor (U0126) was administered into diabetic rats 30 minutes before ischemia as a pretreatment. Results showed that the number of surviving neurons in the hippocampal CA1 region was reduced, extracellular signal-regulated kinase 1/2 phosphorylation and KuT0 activity were decreased, and pro-apoptotic Bax expression was upregulated after intervention using U0126. These findings demonstrate that inhibition of extracellular signal-regulated kinase 1/2 activity aggravated neuronal loss in the hippocampus in a diabetic rat after cerebral ischemia/reperfusion, further decreased DNA repairing ability and ac- celerated apoptosis in hippocampal neurons. Extracellular signal-regulated kinase 1/2 activation plays a neuroprotective role in hippocampal neurons in a diabetic rat after cerebral ischemia/ reperfusion. 展开更多
关键词 nerve regeneration brain injury cerebral ischemia/reperfusion DNA dependent proteinkinase extracellular signal-regulated kinase Bax apoptosis HIPPOCAMPUS neural regeneration
下载PDF
Characterization of astrocytes and microglial cells in the hippocampal CA1 region after transient focal cerebral ischemia in rats treated with Ilexonin A 被引量:5
15
作者 Ai-Ling Xu Guan-Yi Zheng +2 位作者 Hui-Ying Ye Xiao-Dong Chen Qiong Jiang 《Neural Regeneration Research》 SCIE CAS CSCD 2020年第1期78-85,共8页
Ilexonin A is a compound isolated from the root of Ilex pubescens,a traditional Chinese medicine.Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the... Ilexonin A is a compound isolated from the root of Ilex pubescens,a traditional Chinese medicine.Ilexonin A has been shown to play a neuroprotective role by regulating the activation of astrocytes and microglia in the peri-infarct area after ischemia.However,the effects of ilexonin A on astrocytes and microglia in the infarct-free region of the hippocampal CA1 region remain unclear.Focal cerebral ischemia models were established by 2-hour occlusion of the middle cerebral artery in rats.Ilexonin A(20,40 or 80 mg/kg)was administered immediately after ischemia/reperfusion.The astrocyte marker glial fibrillary acidic protein,microglia marker Iba-1,neural stem cell marker nestin and inflammation markers were detected by immunohistochemistry and western blot assay.Expression levels of tumor necrosis factor-αand interleukin 1βwere determined by enzyme linked immunosorbent assay in the hippocampal CA1 tissue.Astrocytes were activated immediately in progressively increasing numbers from 1,3,to 7 days post-ischemia/reperfusion.The number of activated astrocytes further increased in the hippocampal CA1 region after treatment with ilexonin A.Microglial cells remained quiescent after ischemia/reperfusion,but became activated after treatment with ilexonin A.Ilexonin A enhanced nestin expression and reduced the expression of tumor necrosis factor-αand interleukin 1βin the hippocampus post-ischemia/reperfusion.The results of the present study suggest that ilexonin A has a neuroprotective effect in the hippocampus after ischemia/reperfusion,probably through regulating astrocytes and microglia activation,promoting neuronal stem cell proliferation and reducing the levels of pro-inflammatory factors.This study was approved by the Animal Ethics Committee of the Fujian Medical University Union Hospital,China. 展开更多
关键词 ASTROCYTES hippocampal CA1 REGION ilexonin A MICROGLIA middle cerebral artery occlusion neural stem cell NEUROPROTECTION transient focal cerebral ischemia
下载PDF
Mechanism of low molecular weight GTP binding protein RAC1 in injury of neural function of rats with cerebral ischemia reperfusion 被引量:3
16
作者 Ya-Hong Li Lu-Jun Qiao Xiao-Ying Lin 《Asian Pacific Journal of Tropical Medicine》 SCIE CAS 2016年第5期460-464,共5页
Objective: To discuss the mechanism of low molecular weight GTP binding protein RAC1 in the injury of neural function based on building the rat model of cerebral ischemia reperfusion. Methods: Middle cerebral artery o... Objective: To discuss the mechanism of low molecular weight GTP binding protein RAC1 in the injury of neural function based on building the rat model of cerebral ischemia reperfusion. Methods: Middle cerebral artery of rats was ligated and the ligature was released to restore the perfusion after 2 h, the rat model of cerebral ischemia reperfusion injury was built, while the middle cerebral artery was ligated. The rats were randomly divided into the sham group, cerebral ischemia reperfusion group(I/R group) and the group with the injection of RAC1 activity inhibitor NSC23766(NSC group). The survival and neurological severity score of rats in each group were observed and recorded. Nissl staining was employed to observe the nerve cells, and Western blot to detect expression of RAC1, superoxide dismutase and malondialdehyde. Results: Number of nerve cells for rats in NSC group was significantly more than that in I/R group, but significantly less than that in sham group, with the statistical difference(P<0.05). The brain water content for rats in NSC group was significantly lower than that in I/R group, but significantly higher than that in sham group, with the statistical difference(P<0.05). The expression of RAC1 and malondialdehyde for rats in NSC group was significantly lower than that in I/R group, but higher than that in sham group; while the expression of superoxide dismutase was lower than that in sham group, but higher than that in I/R group, with the statistical difference(P<0.05). Conclusions: The inhibition of RAC1 activity can reduce the oxidative stress, reduce the neurologic impairment because of cerebral ischemia reperfusion and thus protect the neural function. 展开更多
关键词 RAC1 cerebral ischemia reperfusion NEURAL FUNCTION
下载PDF
Bumetanide promotes neural precursor cell regeneration and dendritic development in the hippocampal dentate gyrus in the chronic stage of cerebral ischemia 被引量:1
17
作者 Wang-shu Xu Xuan Sun +4 位作者 Cheng-guang Song Xiao-peng Mu Wen-ping Ma Xing-hu Zhang Chuan-sheng Zhao 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第5期745-751,共7页
Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic... Bumetanide has been shown to lessen cerebral edema and reduce the infarct area in the acute stage of cerebral ischemia. Few studies focus on the effects of bumetanide on neuroprotection and neurogenesis in the chronic stage of cerebral ischemia. We established a rat model of cerebral ischemia by injecting endothelin-1 in the left cortical motor area and left corpus striatum. Seven days later, bumetanide 200 μg/kg/day was injected into the lateral ventricle for 21 consecutive days with a mini-osmotic pump. Results demonstrated that the number of neuroblasts cells and the total length of dendrites increased, escape latency reduced, and the number of platform crossings increased in the rat hippocampal dentate gyrus in the chronic stage of cerebral ischemia. These findings suggest that bumetanide promoted neural precursor cell regeneration, dendritic development and the recovery of cognitive function, and protected brain tissue in the chronic stage of ischemia. 展开更多
关键词 nerve regeneration cerebral ischemia BUMETANIDE Na+-K+-2Cl- cotransporter 1 hippocampal dentate gyrus neurogenesis neuralprecursor cells dendritic development cognitive function neural regeneration
下载PDF
Expression of netrin-1 and its receptors, deleted in colorectal cancer and uncoordinated locomotion-5 homolog B, in rat brain following focal cerebral ischemia reperfusion injury 被引量:1
18
作者 Xiaodan Wang Jinming Xu +2 位作者 Jieqin Gong Hui Shen Xiaoping Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期64-69,共6页
Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated lo... Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated locomotion-5 homolog B receptors, netrin-1 plays a guiding role in the construction of neural conduction pathways and the directional migration of neuronal cells. In this study, we established a rat middle cerebral artery ischemia reperfusion model using the intraluminal thread technique. Immunofluorescence microscopy showed that the expression of netrin-1 and deleted in colorectal cancer in the ischemic penumbra was upregulated at 1 day after reperfusion, reached a peak at 14 days, and decreased at 21 days. There was no obvious change in the expression of uncoordinated locomotion-5 homolog B during this time period. Double immunofluorescence labeling revealed that netrin-1 was expressed in neuronal cells and around small vessels, but not in astrocytes and microglia, while deleted in colorectal cancer was localized in the cell membranes and protrusions of neurons and astrocytes. Our experimental findings indicate that netrin-1 may be involved in post-ischemic repair and neuronal protection via deleted in colorectal cancer receptors. 展开更多
关键词 neural regeneration brain injury cerebral ischemia and reperfusion NETRIN-1 uncoordinatedlocomotion-5 homolog B deleted in colorectal cancer neuron brain injury grant-supported paper photographs-containing paper NEUROREGENERATION
下载PDF
Delayed hippocampal neuronal death in young gerbil following transient global cerebral ischemia is related to higher and longer-term expression of p63 in the ischemic hippocampus
19
作者 Eun Joo Bae Bai Hui Chen +12 位作者 Bing Chun Yan Bich Na Shin Jeong Hwi Cho In Hye Kim Ji Hyeon Ahn Jae Chul Lee Hyun-Jin Tae Seongkweon Hong Dong Won Kim Jun Hwi Cho Yun Lyul Lee Moo-Ho Won Joon Ha Park 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期944-950,共7页
The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not bee... The tumor suppressor p63 is one of p53 family members and plays a vital role as a regulator of neuronal apoptosis in the development of the nervous system. However, the role of p63 in mature neuronal death has not been addressed yet. In this study, we first compared ischemia-induced effects on p63 expression in the hippocampal regions (CA1-3) between the young and adult gerbils subjected to 5 minutes of transient global cerebral ischemia. Neuronal death in the hippocampal CA1 region of young gerbils was significantly slow compared with that in the adult gerbils after transient global cerebral ischemia, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons in the sham-operated young group was significantly low compared with that in the sham-operated adult group, p63 immunoreactivity was apparently changed in ischemic hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. In the ischemia-operated adult groups, p63 immunoreactivity in the hippocampal CA1 pyramidal neurons was significantly decreased at 4 days post-ischemia; however, p63 immunoreactivity in the ischemia-operated young group was significantly higher than that in the ischemia-operated adult group. At 7 days post-ischemia, p63 immunoreactivity was decreased in the hippocampal CA1 pyramidal neurons in both ischemia-operated young and adult groups. Change patterns of p63 level in the hippocampal CA1 region of adult and young gerbils after ischemic damage were similar to those observed in the immunohistochemical results. These findings indicate that higher and longer-term expression of p63 in the hippocampal CA1 region of the young gerbils after ischemia/reperfusion may be related to more delayed neuronal death compared to that in the adults. 展开更多
关键词 p53 tumor suppressor gene family cerebral ischemia/reperfusion pyramidal neurons CA1 region delayed neuronal death immunohistochemistry western blotting neural regeneration
下载PDF
Effects of resveratrol on regulating apoptosis and autophagy in cerebral ischemia reperfusion in rats
20
作者 Yu-Jie Sun 《Journal of Hainan Medical University》 2018年第1期5-8,共4页
Objective: To study the effects of resveratrol (Res) on regulating apoptosis and autophagy in cerebral ischemia reperfusion (I/R) in rats. Methods: SD rats were selected as experimental animals and randomly divided in... Objective: To study the effects of resveratrol (Res) on regulating apoptosis and autophagy in cerebral ischemia reperfusion (I/R) in rats. Methods: SD rats were selected as experimental animals and randomly divided into Sham group, I/R group and Res group. Sham group were given sham operation, I/R group were established into cerebral ischemia reperfusion models by suture method, and Res group were established into cerebral ischemia reperfusion models and then given resveratrol intervention. The protein levels of anti-apoptosis molecules, pro-apoptosis molecules and autophagy markers in brain tissues were measured 24 h after reperfusion. Results: Livin, Survivin, XIAP and p62 protein levels in brain tissue of I/R group were significantly lower than those of Sham group whereas CytC, AIF, Fas, FasL, Caspase-8, Caspase-9, LC3-Ⅱ, Beclin1, Bnip-3 and Atg5 protein levels were significantly higher than those of Sham group);Livin, Survivin, XIAP and p62 protein levels in brain tissue of Res group were significantly higher than those of I/R group whereas CytC, AIF, Fas, FasL, Caspase-8, Caspase-9, LC3-Ⅱ, Beclin1, Bnip-3 and Atg5 protein levels were significantly lower than those of I/R group. Conclusion: Resveratrol has a significant inhibitory effect on apoptosis and autophagy in cerebral ischemia reperfusion of rats. 展开更多
关键词 cerebral ischemia reperfusion RESVERATROL APOPTOSIS AUTOPHAGY
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部