β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno...β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.展开更多
With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but i...With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic brain tissues still face ischemia-reperfusion injury after recanalization. Nowadays, effective neurological protective agents still cannot completely resist the multiple damages of ischemia-reperfusion injury. As an iron-dependent mode of programmed cell death, ferroptosis occupies an important position in ischemia-reperfusion injury. Selenium plays a unique protective role in ischemia-reperfusion injury as an active site element in the center of glutathione peroxidase. Therefore, the study mainly aims to review the protective role of selenium in IS and the related mechanisms, as well as the effect of selenium on the risk factors of IS.展开更多
Appropriate autophagy has protective effects on ischemic nerve tissue,while excessive autophagy may cause cell death.The inflammatory response plays an important role in the survival of nerve cells and the recovery of...Appropriate autophagy has protective effects on ischemic nerve tissue,while excessive autophagy may cause cell death.The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia.Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke.This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows.(1)Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR,the AMPK pathway,and inhibition of inflammasome activation.(2)Activation of inflammation triggers the formation of autophagosomes,and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1.Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK,reducing the flux and autophagy level,thereby inducing inflammatory activity.(3)By blocking the activation of autophagy,the activation of inflammasomes can alleviate cerebral ischemic injury.Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway,which is beneficial to the recovery of neural tissue after ischemia.Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway.These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.展开更多
Two common polymorphisms of the peroxisome proliferator-activated receptor gamma(PPARG) gene, rs1801282 and rs3856806, may be important candidate gene loci affecting the susceptibility to ischemic stroke. This case-co...Two common polymorphisms of the peroxisome proliferator-activated receptor gamma(PPARG) gene, rs1801282 and rs3856806, may be important candidate gene loci affecting the susceptibility to ischemic stroke. This case-control study sought to identify the relationship between these two single-nucleotide polymorphisms and ischemic stroke risk in a northern Chinese Han population. A total of 910 ischemic stroke participants were recruited from the First Hospital of China Medical University, Shenyang, China as a case group, of whom 895 completed the study. The 883 healthy controls were recruited from the Health Check Center of the First Hospital of China Medical University, Shenyang, China. All participants or family members provided informed consent. The study protocol was approved by the Ethics Committee of the First Hospital of China Medical University, China on February 20, 2012(approval No. 2012-38-1). The protocol was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR-COC-17013559). Plasma genomic DNA was extracted from all participants and analyzed for rs1801282 and rs3856806 single nucleotide polymorphisms using a SNaPshot Multiplex sequencing assay. Odds ratios(ORs) and 95% confidence intervals(CIs) were calculated using unconditional logistic regression to estimate the association between ischemic stroke and a particular genotype. Results demonstrated that the G allele frequency of the PPARG gene rs1801282 locus was significantly higher in the case group than in the control group(P < 0.001). Individuals carrying the G allele had a 1.844 fold increased risk of ischemic stroke(OR = 1.844, 95% CI: 1.286–2.645, P < 0.001). Individuals carrying the rs3856806 T allele had a 1.366 fold increased risk of ischemic stroke(OR = 1.366, 95% CI: 1.077–1.733, P = 0.010). The distribution frequencies of the PPARG gene haplotypes rs1801282-rs3856806 in the control and case groups were determined. The frequency of distribution in the G-T haplotype case group was significantly higher than that in the control group. The risk of ischemic stroke increased to 2.953 times in individuals carrying the G-T haplotype(OR = 2.953, 95% CI: 2.082–4.190, P < 0.001). The rs1801282 G allele and rs3856806 T allele had a multiplicative interaction(OR = 3.404, 95% CI: 1.631–7.102, P < 0.001) and additive interaction(RERI = 41.705, 95% CI: 14.586–68.824, AP = 0.860;95% CI: 0.779–0.940;S = 8.170, 95% CI: 3.772–17.697) on ischemic stroke risk, showing a synergistic effect. Of all ischemic stroke cases, 86% were attributed to the interaction of the G allele of rs1801282 and the T allele of rs3856806. The effect of the PPARG rs1801282 G allele on ischemic stroke risk was enhanced in the presence of the rs3856806 T allele(OR = 8.001 vs. 1.844). The effect of the rs3856806 T allele on ischemic stroke risk was also enhanced in the presence of the rs1801282 G allele(OR = 2.546 vs. 1.366). Our results confirmed that the G allele of the PPARG gene rs1801282 locus and the T allele of the rs3856806 locus may be independent risk factors for ischemic stroke in the Han population of northern China, with a synergistic effect between the two alleles.展开更多
Integrity of the blood-brain barrier structure is essential for maintaining the internal environment of the brain.Development of cerebral infarction and brain edema is strongly associated with blood-brain barrier leak...Integrity of the blood-brain barrier structure is essential for maintaining the internal environment of the brain.Development of cerebral infarction and brain edema is strongly associated with blood-brain barrier leakage.Therefore,studies have suggested that protecting the blood-brain barrier may be an effective method for treating acute stroke.To examine this possibility,stroke model rats were established by middle cerebral artery occlusion and reperfusion.Remote ischemic postconditioning was immediately induced by three cycles of 10-minute ischemia/10-minute reperfusion of bilateral hind limbs at the beginning of middle cerebral artery occlusion reperfusion.Neurological function of rat models was evaluated using Zea Longa’s method.Permeability of the blood-brain barrier was assessed by Evans blue leakage.Infarct volume and brain edema were evaluated using 2,3,5-triphenyltetrazolium chloride staining.Expression of matrix metalloproteinase-9 and claudin-5 m RNA was determined by real-time quantitative reverse transcription-polymerase chain reaction.Expression of matrix metalloproteinase-9 and claudin-5 protein was measured by western blot assay.The number of matrix metalloproteinase-9-and claudin-5-positive cells was analyzed using immunohistochemistry.Our results showed that remote ischemic postconditioning alleviated disruption of the blood-brain barrier,reduced infarct volume and edema,decreased expression of matrix metalloproteinase-9 m RNA and protein and the number of positive cells,increased expression of claudin-5 m RNA and protein and the number of positive cells,and remarkably improved neurological function.These findings confirm that by suppressing expression of matrix metalloproteinase-9 and claudin-5 induced by acute ischemia/reperfusion,remote ischemic postconditioning reduces blood-brain barrier injury,mitigates ischemic injury,and exerts protective effects on the brain.展开更多
Ischemic stroke(IS) is a disease caused by deficiency of blood and oxygen in focal or complete brain,followed by inflammation cascade and other pathological reactions,which finally lead to irreversible damage to the c...Ischemic stroke(IS) is a disease caused by deficiency of blood and oxygen in focal or complete brain,followed by inflammation cascade and other pathological reactions,which finally lead to irreversible damage to the cerebrum.For the inflammation is a key progress at the initiation of ischemia and poststroke,and chemokines work as vital cytokines in inflammation,we focus the roles of chemokines in IS.Studies have shown cerebral ischemia is associated with marked induction of both CXC and CC chemokines which resulting in extensive leukocyte infiltration in the ischemic brain,and neutrophil infiltration may increase cerebral edema inducing injury in the ischemic area.In addition,chemokines also shows other functions such as promote neuroblast migration,hematogenous cell recruitment and functional brain repair.Thus,a similar chemokine ligand/chemokine receptor pair can mediate both beneficial and detrimental effects depending on the window of observation and pathophysiological conditions.This manuscript reviews the studies about chemokine-mediated effects in cerebral ischemia/reperfusion and discusses the potential significance of these interactions in injury and repair of ischemic tissues.We also refer drug development based on the chemokines and clinical applications using chemokines as diagnostic or prognostic biomarkers in ischemic stroke.展开更多
Cerebral ischemic injury is the main manifestation of stroke,and its incidence in stroke patients is 70–80%.Although ischemic stroke can be treated with tissue-type plasminogen activator,its time window of effectiven...Cerebral ischemic injury is the main manifestation of stroke,and its incidence in stroke patients is 70–80%.Although ischemic stroke can be treated with tissue-type plasminogen activator,its time window of effectiveness is narrow.Therefore,the incidence of paralysis,hypoesthesia,aphasia,dysphagia,and cognitive impairment caused by cerebral ischemia is high.Nerve tissue regeneration can promote the recovery of the aforementioned dysfunction.Neural stem cells can participate in the reconstruction of the damaged nervous system and promote the recovery of nervous function during self-repair of damaged brain tissue.Neural stem cell transplantation for ischemic stroke has been a hot topic for more than 10 years.This review discusses the treatment of ischemic stroke with neural stem cells,as well as the mechanisms of their involvement in stroke treatment.展开更多
Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration.However,the role of B cells in ischemic stroke remains unclear.In this study,we identified a novel phenotype...Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration.However,the role of B cells in ischemic stroke remains unclear.In this study,we identified a novel phenotype of macrophage-like B cells in brain-infiltrating immune cells expressing a high level of CD45.Macrophage-like B cells chara cterized by co-expression of B-cell and macrophage markers,showed stronger phagocytic and chemotactic functions compared with other B cells and showed upregulated expression of phagocytosis-related genes.Gene Ontology analysis found that the expression of genes associated with phagocytosis,including phagosome-and lysosome-related genes,was upregulated in macrophage-like B cells.The phagocytic activity of macrophage-like B cells was ve rified by immunostaining and three-dimensional reconstruction,in which TREM2-labeled macrophage-like B cells enwrapped and internalized myelin debris after cerebral ischemia.Cell-cell interaction analysis revealed that macrophage-like B cells released multiple chemokines to recruit peripheral immune cells mainly via CCL pathways.Single-cell RNA sequencing showed that the transdiffe rentiation to macrophage-like B cells may be induced by specific upregulation of the transcription factor CEBP fa mily to the myeloid lineage and/or by downregulation of the transcription factor Pax5 to the lymphoid lineage.Furthermore,this distinct B cell phenotype was detected in brain tissues from mice or patients with traumatic brain injury,Alzheimer’s disease,and glioblastoma.Overall,these results provide a new perspective on the phagocytic capability and chemotactic function of B cells in the ischemic brain.These cells may serve as an immunotherapeutic target for regulating the immune response of ischemic stroke.展开更多
LncRNA(long non-coding RNA) H19 is a transcript of the H19 gene that is expressed during embryogenesis.We previously discove red a role for circular lncRNA H19 in the onset and prognosis of cerebral ischemic stroke.In...LncRNA(long non-coding RNA) H19 is a transcript of the H19 gene that is expressed during embryogenesis.We previously discove red a role for circular lncRNA H19 in the onset and prognosis of cerebral ischemic stroke.In this study,we used serum from patients with ischemic stroke,and mouse and cell culture models to elucidate the roles of plasma and neuronal exosomes in the regulatory effect of lncRNA H19 on insulin-like growth factor-1 and its mechanism in ischemic stroke,using western blotting,quantitative real-time polymerase chain reaction,and enzyme-linked immunosorbent assays.Plasma exosomal IncRNA H19 was negatively associated with blood levels of insulin-like growth factor-1 in samples from patients with cerebral ischemic stroke.In a mouse model,levels of exosomal IncRNA H19 were positively correlated with plasma and cerebral lncRNA H19.In a cell co-culture model,we confirmed that IncRNA H19 was transported from neuro ns to astrocytes by exosomes to induce downregulation of insulin-like growth factor-1 through the H19/let-7 a/insulin-like growth factor-1 receptor axis.This study provides the first evidence for the transpo rtation of IncRNA H19 by exosomes and the relationship between IncRNA H19 and insulinlike growth factor-1.展开更多
Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protec...Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway.The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion.Nicotiflorin(10 mg/kg) was administered by tail vein injection.Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase d UTP nick end labeling assay.Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining.Additionally,p-JAK2,p-STAT3,Bcl-2,Bax,and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay.Nicotiflorin altered the shape and structure of injured neurons,decreased the number of apoptotic cells,down-regulates expression of p-JAK2,p-STAT3,caspase-3,and Bax,decreased Bax immunoredactivity,and increased Bcl-2 protein expression and immunoreactivity.These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.展开更多
Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal rec...Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal received middle artery occlusion and reperfusion surgery. The results showed that brain infarct volume was significantly reduced after remote ischemic pre-conditioning. Scores in the forelimb placing test and the postural reflex test were significantly lower in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. Thus, neurological function was better in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. These results indicate that remote ischemic pre-conditioning in rat hindlimb exerts protective effects in ischemia-reperfusion injury.展开更多
OBJECTIVE To investigate the CKLF1 mediated expression of microglia/macrophage phenotypes in vitro and in vivo,discussing the involved pathway.METHODS In vitro,primary microglia isolated from mice cortex were used to ...OBJECTIVE To investigate the CKLF1 mediated expression of microglia/macrophage phenotypes in vitro and in vivo,discussing the involved pathway.METHODS In vitro,primary microglia isolated from mice cortex were used to study the effects of CKLF1 by qPCR analysis and immunofluorescence staining.In vivo,WT C57 and CKLF1 deficient mice were used to explore the effects of CKLF1.TTC staining,MRI and Nissl staining were applied to examine the infarction or neuron loss.Zea longa test was used to evaluate the neurological deficit of mice.Western blotting was used to investigate the changes of specific protein and discuss the involved pathway.We also used qPCR analysis and immunofluorescence staining for polarization markers to determine the effects of CKLF1.RESULTS CKLF1 could drive primary microglia to M1 phenotype for 24 h stimulation in primary microglia.In mice transient ischemic stroke model,CKLF1 attenuated ischemic injury,and accompanied by promoting microglia/macrophage toward M1 polarization.Increased expression of pro-inflammatory cytokines and decreased expression of neurotropic factors and anti-inflammatory cytokines were observed in mice subjected to cerebral ischemia with C27.Moreover,NF-κB activation enhancement was detected in C27 modulated M1 polarization effects.CONCLUSION CKLF1 is an important mediator of driving M1 phenotype of microglia/macrophage at early stage of cerebral ischemic injury,contributing to aggravation of cerebral ischemia injury,which closely related to microglia/macrophage M1 polarization guided inflammatory response.Targeting CKLF1 has the potential to treat ischemic stroke.展开更多
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere...In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.展开更多
Despite obvious progress in the treatment of acute forms of ischemic stroke, the risk of this condition remains unacceptably high. Brain infarction in the middle cerebral artery basin occurs in patients with atheroscl...Despite obvious progress in the treatment of acute forms of ischemic stroke, the risk of this condition remains unacceptably high. Brain infarction in the middle cerebral artery basin occurs in patients with atherosclerosis. The onset of the brain infarction is facilitated by the cessation of circulation (embolism) in conditions of insufficient collateral circulation. The extent of the infarct zone is determined by neuronal death and impaired microcirculation. The development of new methods for effective targeted restorative stroke therapy is crucial for restorative treatment and reducing the risk of mortality after stroke. Remote ischemic conditioning (RIC) is an approach to limiting reperfusion injury in the ischemic region of the brain after focal ischemia. One of the most commonly used <i>in vivo</i> models in stroke studies is the filament model of Middle Cerebral Artery Occlusion (MCAO) in rats. In our experiment, it was performed for 30 min (J. Koizumi) with subsequent 48-hour reperfusion. Within the first 24 hours after the start of reperfusion several short episodes of ischemia in low limbs were induced. After 48 hours of reperfusion the brains were harvested and stained with TTC. Then we evaluated the effect of RIC within 24 hours <i>ex vivo</i> in rats’ brains, as well as syndecan-1 plasma concentration. Infarct area was assessed by means of Image-Pro program with statistical analysis. Infarct volumes in the model group (31.97% ± 2.5%) were significantly higher compared to the values in the RIC group 48 hours after ischemia-reperfusion (13.6% ± 1.3%) (*P < 0.05). A significant reduction in the area of infarction after RIC is likely due to the effect on the regulation of collateral blood flow in the ischemia area. On the second day after ischemia-reperfusion, tissue swelling was reduced in the RIC group compared to the model group. Analysis of the average concentration of Syndecan-1 revealed the difference between model and RIC groups. Syndecan-1, endothelial glycocalyx protein, might be the regulator which performs vascular control of the interaction with inflammatory cell and is responsible for mediate effect of remote ischemic conditioning on the restriction of ischemic-reperfusion injury.展开更多
Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the c...Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-m TOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, m TOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin(50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and p S317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-m TOR and p S757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-m TOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.展开更多
OBJECTIVE: To identify global research trends in the use of acupuncture to treat cerebral infarction. DATA RETRIEVAL: We performed a bibliometric analysis of studies on the use of acupuncture to treat cerebral infar...OBJECTIVE: To identify global research trends in the use of acupuncture to treat cerebral infarction. DATA RETRIEVAL: We performed a bibliometric analysis of studies on the use of acupuncture to treat cerebral infarction published during 2002-2011, retrieved from Scopus, using the key words of acupuncture and cerebral infarction or ischemic stroke. SELECTION CRITERIA: Inclusion criteria: peer-reviewed articles on the use of acupuncture to treat cerebral infarction indexed in Scopus and published between 2002 and 2011; types of publications were original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. Exclusion criteria: articles that required manual searching or telephone access; documents that were not published in the public domain; and corrected papers. MAIN OUTCOME MEASURES: (a) Annual publication output; (b) language of publication; (c) type of publication; (d) key words of publication; (e) publication by research field; (f) publication by journal (g) publication by country and institution; (h) publication by author; (i) most-cited papers between 2002 and 2006; and (j) most-cited papers between 2007 and 2011. RESULTS: A total of 160 publications on the use of acupuncture to treat cerebral infarction from 2002-2011 were retrieved from Scopus. The number of publications increased gradually over the 10-year study period; most were written in Chinese or English. Articles and reviews constituted the major types. The most frequent key word used was acupuncture. The most prolific journals in this area were Zhongguo 7hen Jiu and the Chinese Journal of Clinical Rehabilitation. Of the 160 publications retrieved, half came from Chinese authors and institutions. Tianjin University of Traditional Chinese Medicine was the most prolific research institute. Two papers were cited 30 times; they were published in 2002 and 2009, respectively. CONCLUSION: In the field of neuroscience, there is little literature on acupuncture for cerebral infarction. The most-cited papers were cited 30 times in the past 3 years. We believe that, with advances in the study of mechanisms in neurobiology, research on acupuncture will also advance and will become the concern of more scholars.展开更多
基金supported by the National Natural Science Foundation of China,Nos.82104158(to XT),31800887(to LY),31972902(to LY),82001422(to YL)China Postdoctoral Science Foundation,No.2020M683750(to LY)partially by Young Talent Fund of University Association for Science and Technology in Shaanxi Province of China,No.20200307(to LY).
文摘β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways.
文摘With the wide application of thrombolytic drugs and the advancement of endovascular therapeutic techniques, the recanalization treatment of acute artery occlusion in ischemic stroke (IS) has made a leap forward, but ischemic brain tissues still face ischemia-reperfusion injury after recanalization. Nowadays, effective neurological protective agents still cannot completely resist the multiple damages of ischemia-reperfusion injury. As an iron-dependent mode of programmed cell death, ferroptosis occupies an important position in ischemia-reperfusion injury. Selenium plays a unique protective role in ischemia-reperfusion injury as an active site element in the center of glutathione peroxidase. Therefore, the study mainly aims to review the protective role of selenium in IS and the related mechanisms, as well as the effect of selenium on the risk factors of IS.
基金supported by the Natural Science Foundation of Shanghai of China,No.17ZR1425800(to KYL)the Shanghai Pudong District Health Bureau of China,No.PDZX2017-25(to KYL)
文摘Appropriate autophagy has protective effects on ischemic nerve tissue,while excessive autophagy may cause cell death.The inflammatory response plays an important role in the survival of nerve cells and the recovery of neural tissue after ischemia.Many studies have found an interaction between autophagy and inflammation in the pathogenesis of ischemic stroke.This study outlines recent advances regarding the role of autophagy in the post-stroke inflammatory response as follows.(1)Autophagy inhibits inflammatory responses caused by ischemic stimulation through mTOR,the AMPK pathway,and inhibition of inflammasome activation.(2)Activation of inflammation triggers the formation of autophagosomes,and the upregulation of autophagy levels is marked by a significant increase in the autophagy-forming markers LC3-II and Beclin-1.Lipopolysaccharide stimulates microglia and inhibits ULK1 activity by direct phosphorylation of p38 MAPK,reducing the flux and autophagy level,thereby inducing inflammatory activity.(3)By blocking the activation of autophagy,the activation of inflammasomes can alleviate cerebral ischemic injury.Autophagy can also regulate the phenotypic alternation of microglia through the nuclear factor-κB pathway,which is beneficial to the recovery of neural tissue after ischemia.Studies have shown that some drugs such as resveratrol can exert neuroprotective effects by regulating the autophagy-inflammatory pathway.These studies suggest that the autophagy-inflammatory pathway may provide a new direction for the treatment of ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.81070913(to ZYH)
文摘Two common polymorphisms of the peroxisome proliferator-activated receptor gamma(PPARG) gene, rs1801282 and rs3856806, may be important candidate gene loci affecting the susceptibility to ischemic stroke. This case-control study sought to identify the relationship between these two single-nucleotide polymorphisms and ischemic stroke risk in a northern Chinese Han population. A total of 910 ischemic stroke participants were recruited from the First Hospital of China Medical University, Shenyang, China as a case group, of whom 895 completed the study. The 883 healthy controls were recruited from the Health Check Center of the First Hospital of China Medical University, Shenyang, China. All participants or family members provided informed consent. The study protocol was approved by the Ethics Committee of the First Hospital of China Medical University, China on February 20, 2012(approval No. 2012-38-1). The protocol was registered with the Chinese Clinical Trial Registry(registration number: ChiCTR-COC-17013559). Plasma genomic DNA was extracted from all participants and analyzed for rs1801282 and rs3856806 single nucleotide polymorphisms using a SNaPshot Multiplex sequencing assay. Odds ratios(ORs) and 95% confidence intervals(CIs) were calculated using unconditional logistic regression to estimate the association between ischemic stroke and a particular genotype. Results demonstrated that the G allele frequency of the PPARG gene rs1801282 locus was significantly higher in the case group than in the control group(P < 0.001). Individuals carrying the G allele had a 1.844 fold increased risk of ischemic stroke(OR = 1.844, 95% CI: 1.286–2.645, P < 0.001). Individuals carrying the rs3856806 T allele had a 1.366 fold increased risk of ischemic stroke(OR = 1.366, 95% CI: 1.077–1.733, P = 0.010). The distribution frequencies of the PPARG gene haplotypes rs1801282-rs3856806 in the control and case groups were determined. The frequency of distribution in the G-T haplotype case group was significantly higher than that in the control group. The risk of ischemic stroke increased to 2.953 times in individuals carrying the G-T haplotype(OR = 2.953, 95% CI: 2.082–4.190, P < 0.001). The rs1801282 G allele and rs3856806 T allele had a multiplicative interaction(OR = 3.404, 95% CI: 1.631–7.102, P < 0.001) and additive interaction(RERI = 41.705, 95% CI: 14.586–68.824, AP = 0.860;95% CI: 0.779–0.940;S = 8.170, 95% CI: 3.772–17.697) on ischemic stroke risk, showing a synergistic effect. Of all ischemic stroke cases, 86% were attributed to the interaction of the G allele of rs1801282 and the T allele of rs3856806. The effect of the PPARG rs1801282 G allele on ischemic stroke risk was enhanced in the presence of the rs3856806 T allele(OR = 8.001 vs. 1.844). The effect of the rs3856806 T allele on ischemic stroke risk was also enhanced in the presence of the rs1801282 G allele(OR = 2.546 vs. 1.366). Our results confirmed that the G allele of the PPARG gene rs1801282 locus and the T allele of the rs3856806 locus may be independent risk factors for ischemic stroke in the Han population of northern China, with a synergistic effect between the two alleles.
基金supported by the National Natural Science Foundation of China,No.30960107the Natural Science Foundation of the Education Department of Sichuan Province of China,No.14ZA0223
文摘Integrity of the blood-brain barrier structure is essential for maintaining the internal environment of the brain.Development of cerebral infarction and brain edema is strongly associated with blood-brain barrier leakage.Therefore,studies have suggested that protecting the blood-brain barrier may be an effective method for treating acute stroke.To examine this possibility,stroke model rats were established by middle cerebral artery occlusion and reperfusion.Remote ischemic postconditioning was immediately induced by three cycles of 10-minute ischemia/10-minute reperfusion of bilateral hind limbs at the beginning of middle cerebral artery occlusion reperfusion.Neurological function of rat models was evaluated using Zea Longa’s method.Permeability of the blood-brain barrier was assessed by Evans blue leakage.Infarct volume and brain edema were evaluated using 2,3,5-triphenyltetrazolium chloride staining.Expression of matrix metalloproteinase-9 and claudin-5 m RNA was determined by real-time quantitative reverse transcription-polymerase chain reaction.Expression of matrix metalloproteinase-9 and claudin-5 protein was measured by western blot assay.The number of matrix metalloproteinase-9-and claudin-5-positive cells was analyzed using immunohistochemistry.Our results showed that remote ischemic postconditioning alleviated disruption of the blood-brain barrier,reduced infarct volume and edema,decreased expression of matrix metalloproteinase-9 m RNA and protein and the number of positive cells,increased expression of claudin-5 m RNA and protein and the number of positive cells,and remarkably improved neurological function.These findings confirm that by suppressing expression of matrix metalloproteinase-9 and claudin-5 induced by acute ischemia/reperfusion,remote ischemic postconditioning reduces blood-brain barrier injury,mitigates ischemic injury,and exerts protective effects on the brain.
基金National Natural Science Foundation of China(U140222181373997+6 种基金81573640815736368160331581603316)Beijing Natural Science Foundation (7161011)CAMS Innovation Fundfor Medical Sciences (CIFMS) ( 2016-I2M-1-004)Key Research and Development Project of Hun
文摘Ischemic stroke(IS) is a disease caused by deficiency of blood and oxygen in focal or complete brain,followed by inflammation cascade and other pathological reactions,which finally lead to irreversible damage to the cerebrum.For the inflammation is a key progress at the initiation of ischemia and poststroke,and chemokines work as vital cytokines in inflammation,we focus the roles of chemokines in IS.Studies have shown cerebral ischemia is associated with marked induction of both CXC and CC chemokines which resulting in extensive leukocyte infiltration in the ischemic brain,and neutrophil infiltration may increase cerebral edema inducing injury in the ischemic area.In addition,chemokines also shows other functions such as promote neuroblast migration,hematogenous cell recruitment and functional brain repair.Thus,a similar chemokine ligand/chemokine receptor pair can mediate both beneficial and detrimental effects depending on the window of observation and pathophysiological conditions.This manuscript reviews the studies about chemokine-mediated effects in cerebral ischemia/reperfusion and discusses the potential significance of these interactions in injury and repair of ischemic tissues.We also refer drug development based on the chemokines and clinical applications using chemokines as diagnostic or prognostic biomarkers in ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.0040205401797(to QG)the General Research Fund of China,No.15164216(to BWML)
文摘Cerebral ischemic injury is the main manifestation of stroke,and its incidence in stroke patients is 70–80%.Although ischemic stroke can be treated with tissue-type plasminogen activator,its time window of effectiveness is narrow.Therefore,the incidence of paralysis,hypoesthesia,aphasia,dysphagia,and cognitive impairment caused by cerebral ischemia is high.Nerve tissue regeneration can promote the recovery of the aforementioned dysfunction.Neural stem cells can participate in the reconstruction of the damaged nervous system and promote the recovery of nervous function during self-repair of damaged brain tissue.Neural stem cell transplantation for ischemic stroke has been a hot topic for more than 10 years.This review discusses the treatment of ischemic stroke with neural stem cells,as well as the mechanisms of their involvement in stroke treatment.
基金National Natural Science Foundation of China,No.82001460the Natural Science Foundation of Zhejiang Province,No.LQ21H250001 (both to LS)。
文摘Accumulating evidence has demonstrated the involvement of B cells in neuroinflammation and neuroregeneration.However,the role of B cells in ischemic stroke remains unclear.In this study,we identified a novel phenotype of macrophage-like B cells in brain-infiltrating immune cells expressing a high level of CD45.Macrophage-like B cells chara cterized by co-expression of B-cell and macrophage markers,showed stronger phagocytic and chemotactic functions compared with other B cells and showed upregulated expression of phagocytosis-related genes.Gene Ontology analysis found that the expression of genes associated with phagocytosis,including phagosome-and lysosome-related genes,was upregulated in macrophage-like B cells.The phagocytic activity of macrophage-like B cells was ve rified by immunostaining and three-dimensional reconstruction,in which TREM2-labeled macrophage-like B cells enwrapped and internalized myelin debris after cerebral ischemia.Cell-cell interaction analysis revealed that macrophage-like B cells released multiple chemokines to recruit peripheral immune cells mainly via CCL pathways.Single-cell RNA sequencing showed that the transdiffe rentiation to macrophage-like B cells may be induced by specific upregulation of the transcription factor CEBP fa mily to the myeloid lineage and/or by downregulation of the transcription factor Pax5 to the lymphoid lineage.Furthermore,this distinct B cell phenotype was detected in brain tissues from mice or patients with traumatic brain injury,Alzheimer’s disease,and glioblastoma.Overall,these results provide a new perspective on the phagocytic capability and chemotactic function of B cells in the ischemic brain.These cells may serve as an immunotherapeutic target for regulating the immune response of ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.82271353(to JW)Key Research and Development Program of Liaoning Province,No.2020JH2/10300047(to JF).
文摘LncRNA(long non-coding RNA) H19 is a transcript of the H19 gene that is expressed during embryogenesis.We previously discove red a role for circular lncRNA H19 in the onset and prognosis of cerebral ischemic stroke.In this study,we used serum from patients with ischemic stroke,and mouse and cell culture models to elucidate the roles of plasma and neuronal exosomes in the regulatory effect of lncRNA H19 on insulin-like growth factor-1 and its mechanism in ischemic stroke,using western blotting,quantitative real-time polymerase chain reaction,and enzyme-linked immunosorbent assays.Plasma exosomal IncRNA H19 was negatively associated with blood levels of insulin-like growth factor-1 in samples from patients with cerebral ischemic stroke.In a mouse model,levels of exosomal IncRNA H19 were positively correlated with plasma and cerebral lncRNA H19.In a cell co-culture model,we confirmed that IncRNA H19 was transported from neuro ns to astrocytes by exosomes to induce downregulation of insulin-like growth factor-1 through the H19/let-7 a/insulin-like growth factor-1 receptor axis.This study provides the first evidence for the transpo rtation of IncRNA H19 by exosomes and the relationship between IncRNA H19 and insulinlike growth factor-1.
基金financially supported by the Natural Science Foundation of Education Department of Sichuan Province of China,No.14ZB0152the Joint Research Program of Luzhou and Southwest Medical University,in China,No.14JC0120
文摘Nicotiflorin is a flavonoid extracted from Carthamus tinctorius.Previous studies have shown its cerebral protective effect,but the mechanism is undefined.In this study,we aimed to determine whether nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis through the JAK2/STAT3 pathway.The cerebral ischemia/reperfusion injury model was established by middle cerebral artery occlusion/reperfusion.Nicotiflorin(10 mg/kg) was administered by tail vein injection.Cell apoptosis in the ischemic cerebral cortex was examined by hematoxylin-eosin staining and terminal deoxynucleotidyl transferase d UTP nick end labeling assay.Bcl-2 and Bax expression levels in ischemic cerebral cortex were examined by immunohistochemial staining.Additionally,p-JAK2,p-STAT3,Bcl-2,Bax,and caspase-3 levels in ischemic cerebral cortex were examined by western blot assay.Nicotiflorin altered the shape and structure of injured neurons,decreased the number of apoptotic cells,down-regulates expression of p-JAK2,p-STAT3,caspase-3,and Bax,decreased Bax immunoredactivity,and increased Bcl-2 protein expression and immunoreactivity.These results suggest that nicotiflorin protects against cerebral ischemia/reperfusion injury-induced apoptosis via the JAK2/STAT3 pathway.
基金supported by the National Natural Science Foundation of China (The mechanism of the remote ischemia postconditioning and its time therapeutic window), No.30870854(The cerebral protection of remote ischemia postconditioning and its mechanism), No. 30770743(The effect and its mechanism of EPO intravascular injection on the thrombolysis time window of tPA on cerebral infarction in rats),No. 81071058
文摘Three cycles of remote ischemic pre-conditioning induced by temporarily occluding the bilateral femoral arteries (10 minutes) prior to 10 minutes of reperfusion were given once a day for 3 days before the animal received middle artery occlusion and reperfusion surgery. The results showed that brain infarct volume was significantly reduced after remote ischemic pre-conditioning. Scores in the forelimb placing test and the postural reflex test were significantly lower in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. Thus, neurological function was better in rats having undergone remote ischemic pre-conditioning compared with those who did not receive remote ischemic pre-conditioning. These results indicate that remote ischemic pre-conditioning in rat hindlimb exerts protective effects in ischemia-reperfusion injury.
基金National Natural Science Foundation of China(81730096U1402221)+4 种基金National Mega-projectfor Innovative Drugs (2018ZX09711001-002-0072018ZX09711001-003-0052018ZX09711001-009-013)CAMS Innovation Fund for MedicalSciences (CIFMS) (2016-I2M-1-004)Beijing KeyL
文摘OBJECTIVE To investigate the CKLF1 mediated expression of microglia/macrophage phenotypes in vitro and in vivo,discussing the involved pathway.METHODS In vitro,primary microglia isolated from mice cortex were used to study the effects of CKLF1 by qPCR analysis and immunofluorescence staining.In vivo,WT C57 and CKLF1 deficient mice were used to explore the effects of CKLF1.TTC staining,MRI and Nissl staining were applied to examine the infarction or neuron loss.Zea longa test was used to evaluate the neurological deficit of mice.Western blotting was used to investigate the changes of specific protein and discuss the involved pathway.We also used qPCR analysis and immunofluorescence staining for polarization markers to determine the effects of CKLF1.RESULTS CKLF1 could drive primary microglia to M1 phenotype for 24 h stimulation in primary microglia.In mice transient ischemic stroke model,CKLF1 attenuated ischemic injury,and accompanied by promoting microglia/macrophage toward M1 polarization.Increased expression of pro-inflammatory cytokines and decreased expression of neurotropic factors and anti-inflammatory cytokines were observed in mice subjected to cerebral ischemia with C27.Moreover,NF-κB activation enhancement was detected in C27 modulated M1 polarization effects.CONCLUSION CKLF1 is an important mediator of driving M1 phenotype of microglia/macrophage at early stage of cerebral ischemic injury,contributing to aggravation of cerebral ischemia injury,which closely related to microglia/macrophage M1 polarization guided inflammatory response.Targeting CKLF1 has the potential to treat ischemic stroke.
基金supported by the National Natural Science Foundation of China,No.81730050(to WH).
文摘In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression.
文摘Despite obvious progress in the treatment of acute forms of ischemic stroke, the risk of this condition remains unacceptably high. Brain infarction in the middle cerebral artery basin occurs in patients with atherosclerosis. The onset of the brain infarction is facilitated by the cessation of circulation (embolism) in conditions of insufficient collateral circulation. The extent of the infarct zone is determined by neuronal death and impaired microcirculation. The development of new methods for effective targeted restorative stroke therapy is crucial for restorative treatment and reducing the risk of mortality after stroke. Remote ischemic conditioning (RIC) is an approach to limiting reperfusion injury in the ischemic region of the brain after focal ischemia. One of the most commonly used <i>in vivo</i> models in stroke studies is the filament model of Middle Cerebral Artery Occlusion (MCAO) in rats. In our experiment, it was performed for 30 min (J. Koizumi) with subsequent 48-hour reperfusion. Within the first 24 hours after the start of reperfusion several short episodes of ischemia in low limbs were induced. After 48 hours of reperfusion the brains were harvested and stained with TTC. Then we evaluated the effect of RIC within 24 hours <i>ex vivo</i> in rats’ brains, as well as syndecan-1 plasma concentration. Infarct area was assessed by means of Image-Pro program with statistical analysis. Infarct volumes in the model group (31.97% ± 2.5%) were significantly higher compared to the values in the RIC group 48 hours after ischemia-reperfusion (13.6% ± 1.3%) (*P < 0.05). A significant reduction in the area of infarction after RIC is likely due to the effect on the regulation of collateral blood flow in the ischemia area. On the second day after ischemia-reperfusion, tissue swelling was reduced in the RIC group compared to the model group. Analysis of the average concentration of Syndecan-1 revealed the difference between model and RIC groups. Syndecan-1, endothelial glycocalyx protein, might be the regulator which performs vascular control of the interaction with inflammatory cell and is responsible for mediate effect of remote ischemic conditioning on the restriction of ischemic-reperfusion injury.
基金supported by the National Natural Science Foundation of China,No.81202625the Open Fund of Key Laboratory of Cardiovascular and Cerebrovascular Diseases Translational Medicine,China Three Gorges University,China,No.2016xnxg101
文摘Puerarin suppresses autophagy to alleviate cerebral ischemia/reperfusion injury, and accumulating evidence indicates that the AMPKm TOR signaling pathway regulates the activation of the autophagy pathway through the coordinated phosphorylation of ULK1. In this study, we investigated the mechanisms underlying the neuroprotective effect of puerarin and its role in modulating autophagy via the AMPK-m TOR-ULK1 signaling pathway in the rat middle cerebral artery occlusion model of cerebral ischemia/reperfusion injury. Rats were intraperitoneally injected with puerarin, 50 or 100 mg/kg, daily for 7 days. Then, 30 minutes after the final administration, rats were subjected to transient middle cerebral artery occlusion for 90 minutes. Then, after 24 hours of reperfusion, the Longa score and infarct volume were evaluated in each group. Autophagosome formation was observed by transmission electron microscopy. LC3, Beclin-1 p62, AMPK, m TOR and ULK1 protein expression levels were examined by immunofluorescence and western blot assay. Puerarin substantially reduced the Longa score and infarct volume, and it lessened autophagosome formation in the hippocampal CA1 area following cerebral ischemia/reperfusion injury in a dose-dependent manner. Pretreatment with puerarin(50 or 100 mg/kg) reduced Beclin-1 expression and the LC3-II/LC3-I ratio, as well as p-AMPK and p S317-ULK1 levels. In comparison, it increased p62 expression. Furthermore, puerarin at 100 mg/kg dramatically increased the levels of p-m TOR and p S757-ULK1 in the hippocampus on the ischemic side. Our findings suggest that puerarin alleviates autophagy by activating the APMK-m TOR-ULK1 signaling pathway. Thus, puerarin might have therapeutic potential for treating cerebral ischemia/reperfusion injury.
文摘OBJECTIVE: To identify global research trends in the use of acupuncture to treat cerebral infarction. DATA RETRIEVAL: We performed a bibliometric analysis of studies on the use of acupuncture to treat cerebral infarction published during 2002-2011, retrieved from Scopus, using the key words of acupuncture and cerebral infarction or ischemic stroke. SELECTION CRITERIA: Inclusion criteria: peer-reviewed articles on the use of acupuncture to treat cerebral infarction indexed in Scopus and published between 2002 and 2011; types of publications were original research articles, reviews, meeting abstracts, proceedings papers, book chapters, editorial material, and news items. Exclusion criteria: articles that required manual searching or telephone access; documents that were not published in the public domain; and corrected papers. MAIN OUTCOME MEASURES: (a) Annual publication output; (b) language of publication; (c) type of publication; (d) key words of publication; (e) publication by research field; (f) publication by journal (g) publication by country and institution; (h) publication by author; (i) most-cited papers between 2002 and 2006; and (j) most-cited papers between 2007 and 2011. RESULTS: A total of 160 publications on the use of acupuncture to treat cerebral infarction from 2002-2011 were retrieved from Scopus. The number of publications increased gradually over the 10-year study period; most were written in Chinese or English. Articles and reviews constituted the major types. The most frequent key word used was acupuncture. The most prolific journals in this area were Zhongguo 7hen Jiu and the Chinese Journal of Clinical Rehabilitation. Of the 160 publications retrieved, half came from Chinese authors and institutions. Tianjin University of Traditional Chinese Medicine was the most prolific research institute. Two papers were cited 30 times; they were published in 2002 and 2009, respectively. CONCLUSION: In the field of neuroscience, there is little literature on acupuncture for cerebral infarction. The most-cited papers were cited 30 times in the past 3 years. We believe that, with advances in the study of mechanisms in neurobiology, research on acupuncture will also advance and will become the concern of more scholars.