期刊文献+
共找到4,291篇文章
< 1 2 215 >
每页显示 20 50 100
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
1
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 APOPTOSIS ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
2
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:4
3
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice 被引量:2
4
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
Picroside Ⅱ down-regulates matrix metalloproteinase-9 expression following cerebral ischemia/reperfusion injury in rats 被引量:13
5
作者 Xiang Li Xinying Xu +4 位作者 Zhen Li Yunliang Guo Qin Li Xiaodan Li Zhen Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第18期1403-1407,共5页
Studies have shown that Picroside Ⅱ attenuates inflammatory reactions following brain ischemia through the inhibition of the TLR-4-NF-KB signal transduction pathway, and ameliorates cerebral edema through the reducti... Studies have shown that Picroside Ⅱ attenuates inflammatory reactions following brain ischemia through the inhibition of the TLR-4-NF-KB signal transduction pathway, and ameliorates cerebral edema through the reduction of aquaporin-4 expression. Matrix metalloproteinase-9 (MMP-9), located downstream of the TLR-4-NF-KB signal transduction pathway, can degrade the neurovascular matrix, damage the blood-brain barrier to induce cerebral edema, and directly result in neuronal apoptosis and brain injury, Therefore, the present study further observed MMP-9 expression in the brain tissues of rats with cerebral ischemia/reperfusion injury following Picroside Ⅱ treatment. Results demonstrated that Picroside Ⅱ significantly reduced MMP-9 expression in ischemic brain tissues, as well as neuronal apoptosis and brain infarct volume, suggesting Picroside Ⅱ exhibits neuroprotection by down-regulating MMP-9 expression and inhibiting cell apoptosis. 展开更多
关键词 Picroside cerebral ischemia/reperfusion injury APOPTOSIS matrix metalloproteinase-9 ratS neural regeneration
下载PDF
Potential targets for protecting against hippocampal cell apoptosis after transient cerebral ischemiareperfusion injury in aged rats 被引量:9
6
作者 Xiangyu Ji Li'na Zhang +5 位作者 Ran Liu Yingzhi Liu Jianfang Song He Dong Yanfang Jia Zangong Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2014年第11期1122-1128,共7页
Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial pro... Mitochondria play an important role in neuronal apoptosis caused by cerebral ischemia, and the role is mediated by the expression of mitochondrial proteins. This study investigated the involvement of mitochondrial proteins in hippocampal cell apoptosis after transient cerebral ischemia-reperfusion injury in aged rats using a comparative proteomics strategy. Our exper-imental results show that the aged rat brain is sensitive to ischemia-reperfusion injury and that transient ischemia led to cell apoptosis in the hippocampus and changes in memory and cognition of aged rats. Differential proteomics analysis suggested that this phenomenon may be mediated by mitochondrial proteins associated with energy metabolism and apoptosis in aged rats. This study provides potential drug targets for the treatment of transient cerebral isch-emia-reperfusion injury. 展开更多
关键词 nerve regeneration cerebral ischemia reperfusion injury HIPPOCAMPUS cognitivefunction apoptosis MITOCHONDRIA differential proteomics rats aged neural regeneration
下载PDF
Electroacupuncture reduces apoptotic index and inhibits p38 mitogen-activated protein kinase signaling pathway in the hippocampus of rats with cerebral ischemia/reperfusion injury 被引量:18
7
作者 Xiao Lan Xin Zhang +3 位作者 Guo-ping Zhou Chun-xiao Wu Chun Li Xiu-hong Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期409-416,共8页
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr... Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves. 展开更多
关键词 nerve regeneration brain injury ELECTROACUPUNCTURE cell apoptosis cerebral ischemia/reperfusion injury neurological impairment score morphological changes immunohistoehemical assay p38 mitogen-activated protein kinases phosphorylated p38 HIPPOCAMPUS neural regeneration
下载PDF
Edema and neuronal apoptosis in the hippocampus and cortex of elderly rats following transient cerebral ischemia/reperfusion injury 被引量:4
8
作者 Mingshan Wang Lina Zhang +4 位作者 Xiangyu Ji Yanwei Yin Hui Xu Hong Liu Nianguo Hou 《Neural Regeneration Research》 SCIE CAS CSCD 2009年第12期1013-1018,共6页
BACKGROUND: Previous studies of cerebral ischemia have used young animals, with an ischemic time greater than 5 minutes (safe time limit). Despite an increased understanding of neuronal apoptosis, it remains uncert... BACKGROUND: Previous studies of cerebral ischemia have used young animals, with an ischemic time greater than 5 minutes (safe time limit). Despite an increased understanding of neuronal apoptosis, it remains uncertain whether brief cerebral ischemic events of 5 minutes or less damage brain tissue in elderly rodents. OBJECTIVE: To investigate the effects of transient cerebral ischemia (5 minutes)/reperfusion injury on brain cortical and hippocampal edema, aquaporin-4 (AQP-4) expression, and neuronal apoptosis in aged rats, and to compare ischemic sensitivity between cortex and hippocampus. DESIGN, TIME AND SETTING: A randomized, controlled, animal experiment was performed at the Institute of Cerebrovascular Disease, Qingdao University Medical School from April 2008 to March 2009. MATERIALS: Rabbit anti-AQP-4 polyclonal antibody, TUNEL kit, and SABC immunohistochemistry kit were purchased from Wuhan Boster Bioengineering, China. METHODS: A total of 160 healthy, male, aged 19-21 months, Wistar rats were randomly assigned to 4 groups: sham-surgery, and ischemia 1-, 3-, and 5-minute groups, with 40 rats in each group. The global cerebral ischemia model was established using the Pusinelli four-vessel occlusion, and the three cerebral ischemia groups were subdivided into reperfusion 12-hour, 1-, 2-, 3-, and 7-day subgroups, with 8 rats in each subgroup. The sham-surgery group was subjected to exposure of the first cervical bilateral alar foramina and bilateral common carotid arteries. MAIN OUTCOME MEASURES: The dry-wet weight assay was used to measure brain water content and histopathology of the cortex and hippocampus was observed following hematoxylin-eosin staining. In addition, cortical and hippocampal AQP-4 expression was detected by streptavidin-biotin complex immunohistochemistry, and neuronal apoptosis was detected by the TUNEL method. RESULTS: There was no significant difference in brain water content or AQP-4 expression in the cortex and hippocampus between ischemia 1- and 3-minute groups and the sham-surgery group or brain water content or AQP-4 expression in the cortex between ischemia 5-minute group and sham-surgery group (P 〉 0.05). However, brain water content and AQP-4 expression in the hippocampus after 5 minutes of cerebral ischemia were significantly increased compared with the sham-surgery group (P 〈 0.05 or P 〈 0.01). Several TUNEL-positive cells were observed in the cortex and hippocampus of the sham-surgery group and ischemia 1-minute group, as well as in the cortex of the ischemia 3-minute group. In addition, the number of apoptotic neurons in the hippocampus of ischemia 3-minute group and in the cortex and hippocampus of ischemia 5-minute group was significantly increased (P 〈 0.05 or P 〈 0.01 ). Neuronal apoptosis was increased after 12 hours of ischemia/reperfusion, and it reached a peak by 2 days (P 〈 0.01). CONCLUSION: Transient cerebral ischemia (5 minutes) resulted in increased hippocampal edema, AQP-4 expression, and neuronal apoptosis. Moreover, cerebral ischemia had a greater effect on neuronal apoptosis than brain edema or AQP-4 expression, and the hippocampus was more sensitive than the cortex. 展开更多
关键词 cerebral ischemia/reperfusion injury HIPPOCAMPUS CORTEX brain edema AQUAPORIN-4 apoptosis rat ELDERLY
下载PDF
Hydrogen sulfide intervention in focal cerebral ischemia/reperfusion injury in rats 被引量:6
9
作者 Xin-juan Li Chao-kun Li +4 位作者 Lin-yu Wei Na Lu Guo-hong Wang Hong-gang Zhao Dong-liang Li 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第6期932-937,共6页
The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusi... The present study aimed to explore the mechanism underlying the protective effects of hydrogen sulfide against neuronal damage caused by cerebral ischemia/reperfusion. We established the middle cerebral artery occlusion model in rats via the suture method. Ten minutes after middle cerebral artery occlusion, the animals were intraperitoneally injected with hydrogen sulfide donor compound sodium hydrosulfide. Immunofluorescence revealed that the immunoreactivity of P2X7 in the cerebral cortex and hippocampal CA1 region in rats with cerebral ischemia/reperfusion injury decreased with hydrogen sulfide treatment. Furthermore, treatment of these rats with hydrogen sulfide significantly lowered mortality, the Longa neurological deficit scores, and infarct volume. These results indicate that hydrogen sulfide may be protective in rats with local cerebral ischemia/reperfusion injury by down-regulating the expression of P2X7 receptors. 展开更多
关键词 nerve regeneration brain injury hydrogen sulfide cerebral ischemia/reperfusion injury P2X7 receptor 2 3 5-triphenyl-2H-tetrazolium chloride staining animal model protection sodiumhydrosulfide immunofiuorescence middle cerebral artery occlusion NSFC grant neural regeneration
下载PDF
Involvement of the Wnt signaling pathway and cell apoptosis in the rat hippocampus following cerebral ischemia/reperfusion injury 被引量:2
10
作者 Bin Liu Jing Tang +3 位作者 Shiying Li Yuqin Zhang Yan Li Xiaoliu Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期70-75,共6页
We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acu... We investigated the role of the Wnt signaling pathway in cerebral ischemia/reperfusion injury by examining β-catenin and glycogen synthase kinase-3β protein expression in the rat hippocampal CA1 region following acute cerebral ischemia/reperfusion. Our results demonstrate that cell apoptosis increases in the CA1 region following ischemia/reperfusion. In addition, β-catenin and glycogen synthase kinase-3β protein expression gradually increases, peaking at 48 hours following reperfusion. Dickkopf-1 administration, after cerebral ischemia/reperfusion injury, results in decreased cell apoptosis, and β-catenin and glycogen synthase kinase-3β expression, in the CA1 region. This suggests that β-catenin and glycogen synthase kinase-3β, both components of the Wnt signaling pathway, participate in cell apoptosis following cerebral ischemia/reperfusion injury. 展开更多
关键词 neural regeneration brain injury Oickkopf-1 Wnt signaling pathway cell apoptosis β-catenin glycogen synthase kinase-3β protein cerebral ischemia/reperfusion injury grant-supported paper NEUROREGENEratION
下载PDF
Neuroprotective effect of Shenqi Fuzheng injection pretreatment in aged rats with cerebral ischemia/reperfusion injury 被引量:12
11
作者 Ying-min Cai Yong Zhang +5 位作者 Peng-bo Zhang Lu-ming Zhen Xiao-ju Sun Zhi-ling Wang Ren-yan Xu Rong-liang Xue 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第1期94-100,共7页
Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral is... Shenqi Fuzheng injection is extracted from the Chinese herbs Radix Astragali and Radix Codonopsis. The aim of the present study was to investigate the neuroprotective effects of Shenqi Fuzheng injection in cerebral ischemia and reperfusion. Aged rats(20–22 months) were divided into three groups: sham, model, and treatment. Shenqi Fuzheng injection or saline(40 m L/kg) was injected into the tail vein daily for 1 week, after which a cerebral ischemia/reperfusion injury model was established. Compared with model rats that received saline, rats in the treatment group had smaller infarct volumes, lower brain water and malondialdehyde content, lower brain Ca2+ levels, lower activities of serum lactate dehydrogenase and creatine kinase, and higher superoxide dismutase activity. In addition, the treatment group showed less damage to the brain tissue ultrastructure and better neurological function. Our findings indicate that Shenqi Fuzheng injection exerts neuroprotective effects in aged rats with cerebral ischemia/reperfusion injury, and that the underlying mechanism relies on oxygen free radical scavenging and inhibition of brain Ca2+ accumulation. 展开更多
关键词 nerve regeneration cerebral ischemia/reperfusion Shenqi Fuzheng injection aged rats neurological function Ca 2+ oxygen free radicals NSFC grant neural regeneration
下载PDF
Expression of netrin-1 and its receptors, deleted in colorectal cancer and uncoordinated locomotion-5 homolog B, in rat brain following focal cerebral ischemia reperfusion injury 被引量:1
12
作者 Xiaodan Wang Jinming Xu +2 位作者 Jieqin Gong Hui Shen Xiaoping Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2013年第1期64-69,共6页
Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated lo... Netrin-1 is currently one of the most highly studied axon guidance factors. Netrin-1 is widely expressed in the embryonic central nervous system, and together with the deleted in colorectal cancer and uncoordinated locomotion-5 homolog B receptors, netrin-1 plays a guiding role in the construction of neural conduction pathways and the directional migration of neuronal cells. In this study, we established a rat middle cerebral artery ischemia reperfusion model using the intraluminal thread technique. Immunofluorescence microscopy showed that the expression of netrin-1 and deleted in colorectal cancer in the ischemic penumbra was upregulated at 1 day after reperfusion, reached a peak at 14 days, and decreased at 21 days. There was no obvious change in the expression of uncoordinated locomotion-5 homolog B during this time period. Double immunofluorescence labeling revealed that netrin-1 was expressed in neuronal cells and around small vessels, but not in astrocytes and microglia, while deleted in colorectal cancer was localized in the cell membranes and protrusions of neurons and astrocytes. Our experimental findings indicate that netrin-1 may be involved in post-ischemic repair and neuronal protection via deleted in colorectal cancer receptors. 展开更多
关键词 neural regeneration brain injury cerebral ischemia and reperfusion NETRIN-1 uncoordinatedlocomotion-5 homolog B deleted in colorectal cancer neuron brain injury grant-supported paper photographs-containing paper NEUROREGENEratION
下载PDF
Effect of nicorandil on infarct volume and marker enzyme activity in mitochondria of rats with cerebral ischemia/reperfusion injury 被引量:1
13
作者 Peng Wang Shilei Wang +2 位作者 Shuhong Li Qingxian Chang Shiduan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第5期501-504,共4页
BACKGROUND: Recent studies have suggested that mitochondrial ATP-sensitive K+ channel openers could reduce myocardium infarct size, and protect the function of the mitochondria. OBJECTIVE: To investigate the change... BACKGROUND: Recent studies have suggested that mitochondrial ATP-sensitive K+ channel openers could reduce myocardium infarct size, and protect the function of the mitochondria. OBJECTIVE: To investigate the changes of cerebral infarction volume and the activity of marker enzymes in brain mitochondria of rats given the ATP-sensitive K+ channel opener, nicorandil, before focal cerebral ischemia/reperfusion (I/R). DESIGN, TIME AND SETTING: Randomized, controlled animal experiment, completed at the Brain Scientific Research Center of the Affiliated Hospital of Qingdao University from July to November 2007. MATERIALS: Sixty healthy male Wistar rats weighing 280-300 g. Nicorandil, 5-hydroxydecanoate (5-HD) and cytochrome C were purchased from Sigma in the USA. Standard malondialdehyde (MDA) and protein were purchased from Nanjing Jiancheng Biotechnology Institute. METHODS: Sixty rats were randomly divided into a sham operation group, a middle cerebral artery occlusion (MCAO) group, a nicorandil group and a nicorandil+5-HD group. MCAO for 2 hours was performed in the MCAO group, nicorandil group and nicorandil+5-HD group. A total of 5 mL saline were given to the MCAO group before MCAO. The nicorandil group was injected with the ATP-sensitive K+ channel opener nicorandil 10 mg/kg intraperitoneally 30 minutes before MCAO. The nicorandil+5-HD group was injected with 5-HD 10 mg/kg intravenously 15 minutes before the same treatment as the nicorandil group. MAIN OUTCOME MEASURES: Infarct volume by total brain slice calculation, activities of succinate dehydrogenase (SDH) and cytochrome oxidase (CO), and content of MDA were observed at 22 hours of reperfusion after 2 hours MCAO. RESULTS: Sixty rats were included in the final analysis, without any loss. (1) Infarct volume: compared with the MCAO group and nicorandil+5-HD group, the percentage of infarct volume was significantly decreased in the nicorandil group (P 〈 0.01). (2) The content of MDA, expression of SDH and CO in brain: the expressions of SDH and CO in the sham operation group were significantly lower than those in the MCAO, nicorandil and nicorandil+5-HD groups (P 〈 0.01). The expressions of SDH and CO in the nicorandil group were significantly higher than those in the MCAO and nicorandil+5-HD groups (P 〈 0.05). The content of MDA in the brain of the nicorandil group was significantly lower than those in the MCAO and nicorandil+5-HD groups (P 〈 0.01). CONCLUSION: Nicorandil can significantly reduce the infarct volume in a rat MCAO model, increase the activity of the mitochondria and protect against cerebral I/R injury. 展开更多
关键词 mitochondrial K(ATP) channel cerebral ischemia ischemia/reperfusion injury free radicals
下载PDF
Dose-dependent effects of procyanidin on nerve growth factor expression following cerebral ischemia/reperfusion injury in rats 被引量:1
14
作者 Feng Li Hai Xie +1 位作者 Ying Gao Tongxia Zhan 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第4期390-393,共4页
BACKGROUND: Recently, grape seed procyanidin (GSP) has been shown to be exhibit antioxidant effects, effectively reducing ischemia/reperfusion injury and inhibiting brain cell apoptosis. OBJECTIVE: To study the ef... BACKGROUND: Recently, grape seed procyanidin (GSP) has been shown to be exhibit antioxidant effects, effectively reducing ischemia/reperfusion injury and inhibiting brain cell apoptosis. OBJECTIVE: To study the effects of GSP on nerve growth factor (NGF) expression and neurological function following cerebral ischemia/reperfusion injury in rats. DESIGN: Randomized controlled study based on SD rats. SETTING: Weifang Municipal People's Hospital. MATERIALS: Forty-eight healthy adult SD rats weighing 280-330 g and irrespective of gender were provided by the Experimental Animal Center of Shandong University. GSP derived from grape seed was a new high-effective antioxidant provided by Tianjin Jianfeng Natural Product Researching Company (batch number: 20060107). Rabbit-anti-rat NGF monoclonal antibody was provided by Beijing Zhongshan Biotechnology Co., Ltd., and SABC immunohistochemical staining kit by Wuhan Boster Bioengineering Co., Ltd. METHODS: The present study was performed in the Functional Laboratory of Weifang Medical College from April 2006 to January 2007. Forty-eight SD rats were randomly divided into the sham operation group, ischemia/reperfusion group, high-dose GSP (40 mg/kg) group, or low-dose GSP (10 mg/kg) group (n = 12 per group). Ischemia/reperfusion injury was established using the threading embolism method of the middle cerebral artery. Rats in the ischemia/reperfusion model group were given saline injection (2 mL/kg i.p.) once daily for seven days pre-ischemia/reperfusion, and once more at 15 minutes before reperfusion. Rats in the high-dose and low-dose GSP groups were injected with GSP (20 or 5 mg/mL i.p., respectively, 2 mL/kg) with the same regime as the ischemia/reperfusion model group. The surgical procedures in the sham operation group were as the same as those in the ischemia/reperfusion model group, but the thread was approximately 10 mm long, thus, the middle cerebral artery was not blocked. MAIN OUTCOME MEASURES: NGF expression in the ischemic penumbra of the temporal cortex was detected by immunohistochemistry, and positive cells counted by light microscopy (×400). The positive cell rate was calculated by [(positive cells/total cells)× 100%]. Neurological function was scored after 2-hour ischemia/48-hour reperfusion. Higher scores reflected more severe neurofunctional defect. RESULTS: The positive rate of NGF expression in all groups receiving ischemia/reperfusion was significantly higher than that in the sham operation group (q=3.87, P 〈 0.05). The positive rate of NGF expression in the high-dose and low-dose GSP groups were significantly higher than that in the model group (q=4.12, P 〈 0.05), and were greater in the high-dose compared to low-dose GSP groups (q=4.22, P 〈 0.05). Neurological function scores in the high-dose and low-dose GSP groups were significantly lower than that in the ischemia/reperfusion model group (q=3.92, P 〈 0.05). Neurological function score in the high-dose GSP group was significantly less than that in the low-dose GSP group (q=4.02, P 〈 0.05). CONCLUSION: GSP may up-regulate brain-derived NGF expression in a dose-dependent manner following cerebral ischemia/reperfusion injury in order to improve neurological function and protect the brain. 展开更多
关键词 PROCYANIDIN cerebral ischemia/reperfusion injury nerve growth factor
下载PDF
The effect of hyperglycemia on blood brain barrier of rats with focal cerebral ischemia/reperfusion injury 被引量:4
15
作者 Hongxin Wang Yuanwu Mei 《Journal of Nanjing Medical University》 2005年第5期241-246,共6页
Objective: To determine whether hyperglycemia could aggravate the microvascular damage in ischemic stroke. Methods: Hyperglycemia model was made by injection of streptozocin through subcutaneous injection in wistar ... Objective: To determine whether hyperglycemia could aggravate the microvascular damage in ischemic stroke. Methods: Hyperglycemia model was made by injection of streptozocin through subcutaneous injection in wistar rats. Using the suture model, the rats were subjected to 3h of focal ischemia and different times of reperfusion, including 6,12,24,48,96h and 7d. TIC dyeing was used to Show the infarction area of rats. The infarctive volume of rats were calculated by computer imaging analysis system;Matrix metalloproteinase (MMP-2) and (MMP-9)were detected by immunohistochemistly and in situ hybridization histochemistly in Wistar rats. Results: The infarctive volume was siginificantly larger in hyperglycemic rats than that of nonhyperglycemic rats. The level of MMP-2, MMP-9 expression in the group of hyperglycemic rats was higher than that of nonhyperglycemic rats. Conclusion: Hyperglycemia aggravated the injury of focal ischmia-repeffusion in wistar rats and the higher expression of MMP-2,MMP-9 might be one of the mechanism in aggravation of focal ischemia/repeffusion injury. 展开更多
关键词 HYPERGLYCEMIA cerebral ischemia-reperfusion injury MMP-2 MMP-9
下载PDF
Acupuncture effects on serum myelin basic protein and remyelination following 30 minutes and 2 hours of ischemia in a rat model of cerebral ischemia-reperfusion injury 被引量:2
16
作者 Jiangang Duan Ming Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第4期261-266,共6页
BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ... BACKGROUND: Acupuncture treatment on injured cerebral axons has shown to provide efficacy in clinical practice. It is unknown whether acupuncture produces therapeutic effects by protecting injured cerebral myelin in ischemic stroke. OBJECTIVE: To test whether acupuncture provides protection for injured cerebral myelin, based on quantitative data from cerebral ischemia-reperfusion rats, and to compare the effects of early and late acupuncture on serum myelin basic protein (MBP) content and remyelination of the ischemic internal capsule.DESIGN, TIME AND SETTING: A randomized, controlled experiment was performed at the Neurobiological Laboratory, Sichuan University from March 2005 to March 2006. MATERIALS: "Hua Tuo" Brand filiform needles were produced by the Medical Instrument Factory of Suzhou, China.METHODS: A total of 52 adult, healthy, male, Sprague Dawley rats were randomly assigned to four groups: control (n = 4), model (n = 16), early acupuncture (n = 16), and late acupuncture (n = 16). The focal cerebral ischemia-reperfusion model was established by middle cerebral artery occlusion in the right hemisphere using the modified thread embolism method in the latter three groups. Early and late acupuncture groups underwent acupuncture after ischemia for 30 minutes and 2 hours using the Xingnaokaiqiao needling method, respectively. Acupoints were "Neiguarf' (PC 6) and "Sanyinjiao" (SP 6) on the bilateral sides, as well as "Shuigou' (DU 26) and "Baihui" (DU 20) with stimulation for 1 minute at each acupoint. Acupuncture at all acupoints was performed two or three times while the needle was retained, once per day. No special handling was administered to the control clroup.MAIN OUTCOME MEASURES: For each group, remyelination of the internal capsule was observed by Pal-Weigert's myelin staining and serum MBP content was detected using enzyme-linked immunosorbent assay method on days 1,3, 5, and 7 following ischemia-reperfusion injury.RESULTS: Compared with the control group, massive demyelination of the internal capsule occurred, and serum MBP content increased in the model group (P 〈 0.05). Compared with the model group, the extent of demyelination in the internal capsule was less distinct and serum MBP content was significantly less in the early and late acupuncture group (P 〈 0.01 ). Compared with the late acupuncture group, serum MBP content reached a peak later and the peak value was less in the early acupuncture group. CONCLUSION: Results suggest that acupuncture exerts a protective effect on injured cerebral myelin in ischemia-reperfusion rats by reducing serum MBP content and promoting remyelination. The study also suggests that the effect of early acupuncture is superior to late acupuncture. 展开更多
关键词 ACUPUNCTURE focal cerebral ischemia-reperfusion serum myelin basic protein REMYELINATION brain injury neural regeneration
下载PDF
N-acetylserotonin alleviates retinal ischemia-reperfusion injury via HMGB1/RAGE/NF-κB pathway in rats
17
作者 Yu-Ze Zhao Xue-Ning Zhang +7 位作者 Yi Yin Pei-Lun Xiao Meng Gao Lu-Ming Zhang Shuan-Hu Zhou Shu-Na Yu Xiao-Li Wang Yan-Song Zhao 《International Journal of Ophthalmology(English edition)》 SCIE CAS 2024年第2期228-238,共11页
AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for a... AIM:To observe the effects of N-acetylserotonin(NAS)administration on retinal ischemia-reperfusion(RIR)injury in rats and explore the underlying mechanisms involving the high mobility group box 1(HMGB1)/receptor for advanced glycation end-products(RAGE)/nuclear factor-kappa B(NF-κB)signaling pathway.METHODS:A rat model of RIR was developed by increasing the pressure of the anterior chamber of the eye.Eighty male Sprague Dawley were randomly divided into five groups:sham group(n=8),RIR group(n=28),RIR+NAS group(n=28),RIR+FPS-ZM1 group(n=8)and RIR+NAS+FPS-ZM1 group(n=8).The therapeutic effects of NAS were examined by hematoxylin-eosin(H&E)staining,and retinal ganglion cells(RGCs)counting.The expression of interleukin 1 beta(IL-1β),HMGB1,RAGE,and nod-like receptor 3(NLRP3)proteins and the phosphorylation of nuclear factorkappa B(p-NF-κB)were analyzed by immunohistochemistry staining and Western blot analysis.The expression of HMGB1 protein was also detected by enzyme-linked immunosorbent assay(ELISA).RESULTS:H&E staining results showed that NAS significantly reduced retinal edema and increased the number of RGCs in RIR rats.With NAS therapy,the HMGB1 and RAGE expression decreased significantly,and the activation of the NF-κB/NLRP3 pathway was antagonized along with the inhibition of p-NF-κB and NLRP3 protein expression.Additionally,NAS exhibited an anti-inflammatory effect by reducing IL-1βexpression.The inhibitory of RAGE binding to HMGB1 by RAGE inhibitor FPS-ZM1 led to a significant decrease of p-NF-κB and NLRP3 expression,so as to the IL-1βexpression and retinal edema,accompanied by an increase of RGCs in RIR rats.CONCLUSION:NAS may exhibit a neuroprotective effect against RIR via the HMGB1/RAGE/NF-κB signaling pathway,which may be a useful therapeutic target for retinal disease. 展开更多
关键词 retinal diseases retinal ischemiareperfusion injury N-ACETYLSEROTONIN high mobility group box 1 receptor for advanced glycation end-products nuclear factor-κB ratS
下载PDF
Effects of kallikrein gene transfer on penumbral microvascular proliferation and on regional cerebral blood flow following cerebral ischemia/reperfusion injury
18
作者 Ruiyan Lu Qingyu Shen Lianhong Yang Mei Li Yidong Wang Ying Peng 《Neural Regeneration Research》 SCIE CAS CSCD 2008年第10期1045-1050,共6页
BACKGROUND: Recent findings have demonstrated that the kallikrein-kinin system (KKS) participates in the pathological process of cerebral ischemia/reperfusion injury. Kallikrein gene transfer exhibits neural protec... BACKGROUND: Recent findings have demonstrated that the kallikrein-kinin system (KKS) participates in the pathological process of cerebral ischemia/reperfusion injury. Kallikrein gene transfer exhibits neural protective effects following cerebral infarction. OBJECTIVE: To observe the effects of kallikrein gene transfer on vascular proliferation in the peripheral infarct focus and on regional cerebral blood flow (rCBF) following cerebral ischemia/reperfusion injury. DESIGN, TIME AND SETTING: The completely randomized, controlled experiment was performed at the Lin Baixin Laboratory Center, the Second Affiliated Hospital of Sun Yat-sun University between September 2007 and April 2008. MATERIALS: pUCI9-HTK plasmid was constructed and maintained in the Laboratory for Neurology, the Second Affiliated Hospital of Sun Yat-sen University, China. Mouse anti-human kallikrein 1 monoclonal antibody was purchased from R&D Systems, USA. METHODS Ninety healthy, male, Sprague Dawley rats were used. Middle cerebral artery occlusion (MCAO) was established in all rats to induce cerebral ischemia/reperfusion injury. Following MCAO establishment, all rats were randomly divided into three groups (n = 30): blank control, saline, and pAdCMV-HTK. The saline and pAdCMV-HTK groups were stereotactically micro-injected with 5μL of physiological saline or with pAdCMV-HTK [multiplicity of infection (MOI) = 20], respectively, into the ischemic penumbra. In the blank control group, only sham injection was performed. MAIN OUTCOME MEASURES: At 12, 24, and 72 hours after treatment, cerebral infarction volume was measured by 2, 3, 5-triphenyltetrazolium chloride (TTC) staining. Exogenous HTK expression, as well as regional vascular endothelial growth factor (VEGF) expression, was detected by immunohistochemistry. rCBF was examined by 14C-iodoantipyrine micro tracing. In addition, neurological severity score (NSS) was performed. Higher scores indicated more severe neurological deficits. RESULTS: NSS results demonstrated that compared with the saline and the blank control groups, the pAdCMV-HTK group exhibited lower NSSs 24 hours after pAdCMV-HTK injection (P 〈 0.05). The NSSs were further decreased after 72 hours (P 〈 0.01). Cerebral infarction volume at 24 hours, and in particular at 72 hours after treatment, was significantly reduced in the pAdCMV-HTK group compared with the blank control and saline groups (P 〈 0.05). The rCBF in the area surrounding the infarction lesion was slightly decreased in all groups compared with the contralateral area. At 24 and 72 hours following treatment, the rCBF in the peripheral infarction lesion was significantly elevated in the pAdCMV-HTK group compared with the blank control and saline groups (P 〈 0.05). Immunohistochemistry results revealed that VEGF-positive cells were primarily found in the cortex and in some white matter surrounding the cerebral infarction lesion. In addition, the expression of VEGF in the pAdCMV-HTK group was significantly higher compared with that in the blank control and saline groups at 12, 24, and 72 hours following treatment (P 〈 0.05). CONCLUSION: Following cerebral ischemia/reperfusion, kallikrein gene transfer can promote vascular proliferation in the brain tissue surrounding the infarction lesion, improve rCBF, and reduce infarction volume, thereby exhibiting protective effects to attenuate neurological deficits. 展开更多
关键词 cerebral ischemia ischemia/reperfusion injury ADENOVIRUS gene transfer KALLIKREIN vascular endothelial growth factor perfusion regional
下载PDF
Influence of rotating magnetic field on cerebral infarction volume, cerebral edema and free radicals metabolism after cerebral ischemia/reperfusion injury in rats
19
作者 Xiaohong Liu1, Zhiqiang Zhang2, Lixin Zhang3 1Liaoning Disabled Children’s Rehabilitation Center, Shenyang 110015, Liaoning Province, China 2Department of Rehabilitation, Second Hospital Affiliated to China Medical University, Shenyang 110003, Liaoning Province, China 3Department of Rehabilitation and Physiotherapy, First Hospital Affiliated to China Medical University, Shenyang 110001, Liaoning Province, China 《Neural Regeneration Research》 SCIE CAS CSCD 2006年第9期777-780,共4页
BACKGROUND: It has shown that magnetic field can improve blood circulation, decrease blood viscosity, inhibit free radicals, affect Ca2+ flow in nerve cells, control inflammatory and immunological reaction, and accele... BACKGROUND: It has shown that magnetic field can improve blood circulation, decrease blood viscosity, inhibit free radicals, affect Ca2+ flow in nerve cells, control inflammatory and immunological reaction, and accelerate nerve cell regeneration. In addition, protective effect of magnetic field, which acts as an iatrophysics, on ischemic brain tissues has been understood gradually. OBJECTIVE: To investigate the effects of rotating magnetic field (RMF) on volume of cerebral infarction, cerebral edema and metabolism of free radicals in rats after cerebral ischemia/reperfusion injury. DESIGN: Randomized controlled animal study. SETTING: Rehabilitation Center of disabled children, Liaoniang; Department of Rehabilitation, the Second Affiliated Hospital, China Medical University; Department of Rehabilitation Physiotherapy, the First Affiliated Hospital, China Medical University. MATERIALS: A total of 70 healthy Wistar rats aged 18-20 weeks of both genders were selected and randomly divided into 3 groups: sham operation group with 12 rats, control group with 20 rats and treatment group with 38 rats. The treatment group included 4 time points: immediate reperfusion with 6 ones, 6-hour reperfusion with 20 ones, 12-hour reperfusion with 6 ones and 18-hour reperfusion with 6 rats. Main instruments were detailed as follows: magnetic head of rotating magnetic device was 6 cm in diameter; magnetic induction intensity at the surface of magnetic head was 0.25 T in silence; the maximal magnetic induction intensity was 0.09 T at the phase of rotation; the average rotating speed was 2500 r per minute. METHODS: The experiment was carried out in the China Medical University in March 2003. Focal cerebral ischemic animal models were established with modified Longa’s method. Operation was the same in the sham operation, but the thread was inserted as 10 mm. Neurologic impairment was assessed with 5-rating method to screen out cases. Those survivals with grade 1 and grade 2 after ischemia for 2 hours and reperfusion for 24 hours were included in the control group and treatment group. Those in the sham operation group and control group were not treated with RMF. Magnetic head was directed towards the head of rats of the treatment group, and the magnetic head was about 7 mm from skin, treated for 15 minutes. The rats were decapitated to take out brains at 24 hours after reperfusion in each group. Water content of brain and volume of cerebral infarction were assessed with wet-dry weight method and TTC staining, respectively. Activity of superoxide dismutase (SOD), content of malondialdehyde (MDA) and change of brain histomorphology in brain tissue of ischemic side were analyzed. MAIN OUTCOME MEASURES: ① Volume of cerebral infarction and changes of water content in brain; ② measurements of SOD and MDA contents in brain tissue of rats in all groups. RESULTS: A total of 70 qualified animals were involved in the final analysis after rejecting the death and unqualified animal models. ① Water content of brain: Water content of brain in the treatment was less than that in the control group at any time point except the immediate time point, and cerebral edema was relieved [(2.48±0.22)%, (2.32±0.19)%, (2.23±0.36)%, (2.91±0.44)%, P < 0.05]. In addition, there were no significant differences among 6-hour, 12-hour and 18-hour reperfusion groups (P > 0.05). ② Volume of cerebral infarction: The absolute volume of cerebral infarction in the treatment group was smaller than that in the control group [(128.21±15.05), (171.22±40.50) mm3, t =2.438, P < 0.05], and the relative volume of cerebral infarction was smaller than that in the control group [(20.22±1.44)%, (25.17±3.85)%, t =2.95, P < 0.05]. ③ Contents of SOD and MDA in brain tissues: Compared with the control group, the SOD content in the brain tissue in the treatment group increased [(54.54±3.85), (69.52±5.88) kNU/g, t =5.568, P < 0.05], while the MDA content decreased [(0.85±0.06), (1.03±0.09) μmol/g, t =4.076, P < 0.05]. ④ General morphological observation: General morphology manifested that the edema was distinct in the right cerebral hemisphere in the control group, showing fat-like white, shallow anfractuosity, flat gyria, brittle tissue and easy to break up. The edema of right cerebral hemisphere was light and surface was hyperaemia in the treatment group. CONCLUSION: RMF may improve anti-oxidative ability of brain tissue of rats with acute focal cerebral ischemia/reperfusion injury and reduce volume of cerebral infarction and degrees of cerebral edema. 展开更多
关键词 cerebral edema and free radicals metabolism after cerebral ischemia/reperfusion injury in rats free
下载PDF
Correlation between expression of two transforming growth factor-beta 1 receptors and microvascular density in a rat model of cerebral ischemia and reperfusion injury
20
作者 Li Jiang Qingzhu Yue +1 位作者 Lingzhi Yu Xudong Liu 《Neural Regeneration Research》 SCIE CAS CSCD 2011年第11期850-854,共5页
The effects of transforming growth factor-β1 (TGF-β1) are currently controversial. Whether TGF-β1 promotes or inhibits revascularization under different conditions remains poorly understood. Based on previous stu... The effects of transforming growth factor-β1 (TGF-β1) are currently controversial. Whether TGF-β1 promotes or inhibits revascularization under different conditions remains poorly understood. Based on previous studies, the current experiment established rat models of cerebral ischemia and reperfusion injury (IRI), and demonstrated that pathological and functional damage was also increased after IRI. The most serious damage was observed at 3 days after reperfusion, at which time microvascular density fell to its lowest level. Soon afterwards, microvascular density increased, new collateral circulation was gradually established at 4 to 7 days after reperfusion, and pathological damage and neurological deficits were improved. TGF-β1, activin receptor-like kinase 5 (ALK5) mRNA and protein expression levels increased gradually over time. In contrast, ALK1 mRNA and protein expression decreased over the same period. A significant negative correlation was detected between microvascular density and expression of the ALK5 gene transcript. There was no correlation between microvascular density and ALK1 gene transcriptional expression following cerebral IRI in a rat model. These findings suggest that ALK5, rather than ALK1, is the critical receptor in the TGF-β1 signal pathways after cerebral IRI. 展开更多
关键词 cerebral ischemia and reperfusion injury transforming growth factor-β1 transforming growth factor-β1 receptor/activin receptor-like kinase 1 activin receptor-like kinase 5 microvascular density neural regeneration
下载PDF
上一页 1 2 215 下一页 到第
使用帮助 返回顶部