期刊文献+
共找到15,653篇文章
< 1 2 250 >
每页显示 20 50 100
Treatment with β-sitosterol ameliorates the effects of cerebral ischemia/reperfusion injury by suppressing cholesterol overload, endoplasmic reticulum stress, and apoptosis 被引量:4
1
作者 Xiuling Tang Tao Yan +8 位作者 Saiying Wang Qingqing Liu Qi Yang Yongqiang Zhang Yujiao Li Yumei Wu Shuibing Liu Yulong Ma Le Yang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第3期642-649,共8页
β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unkno... β-Sitosterol is a type of phytosterol that occurs naturally in plants.Previous studies have shown that it has anti-oxidant,anti-hyperlipidemic,anti-inflammatory,immunomodulatory,and anti-tumor effects,but it is unknown whetherβ-sitosterol treatment reduces the effects of ischemic stroke.Here we found that,in a mouse model of ischemic stroke induced by middle cerebral artery occlusion,β-sitosterol reduced the volume of cerebral infarction and brain edema,reduced neuronal apoptosis in brain tissue,and alleviated neurological dysfunction;moreover,β-sitosterol increased the activity of oxygen-and glucose-deprived cerebral cortex neurons and reduced apoptosis.Further investigation showed that the neuroprotective effects ofβ-sitosterol may be related to inhibition of endoplasmic reticulum stress caused by intracellular cholesterol accumulation after ischemic stroke.In addition,β-sitosterol showed high affinity for NPC1L1,a key transporter of cholesterol,and antagonized its activity.In conclusion,β-sitosterol may help treat ischemic stroke by inhibiting neuronal intracellular cholesterol overload/endoplasmic reticulum stress/apoptosis signaling pathways. 展开更多
关键词 APOPTOSIS blood-brain barrier Β-SITOSTEROL cerebral ischemia/reperfusion injury cholesterol overload cholesterol transport endoplasmic reticulum stress ischemic stroke molecular docking NPC1L1
下载PDF
A matrix metalloproteinase-responsive hydrogel system controls angiogenic peptide release for repair of cerebral ischemia/reperfusion injury
2
作者 Qi Liu Jianye Xie +5 位作者 Runxue Zhou Jin Deng Weihong Nie Shuwei Sun Haiping Wang Chunying Shi 《Neural Regeneration Research》 SCIE CAS 2025年第2期503-517,共15页
Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug deliv... Vascular endothelial growth factor and its mimic peptide KLTWQELYQLKYKGI(QK)are widely used as the most potent angiogenic factors for the treatment of multiple ischemic diseases.However,conventional topical drug delivery often results in a burst release of the drug,leading to transient retention(inefficacy)and undesirable diffusion(toxicity)in vivo.Therefore,a drug delivery system that responds to changes in the microenvironment of tissue regeneration and controls vascular endothelial growth factor release is crucial to improve the treatment of ischemic stroke.Matrix metalloproteinase-2(MMP-2)is gradually upregulated after cerebral ischemia.Herein,vascular endothelial growth factor mimic peptide QK was self-assembled with MMP-2-cleaved peptide PLGLAG(TIMP)and customizable peptide amphiphilic(PA)molecules to construct nanofiber hydrogel PA-TIMP-QK.PA-TIMP-QK was found to control the delivery of QK by MMP-2 upregulation after cerebral ischemia/reperfusion and had a similar biological activity with vascular endothelial growth factor in vitro.The results indicated that PA-TIMP-QK promoted neuronal survival,restored local blood circulation,reduced blood-brain barrier permeability,and restored motor function.These findings suggest that the self-assembling nanofiber hydrogel PA-TIMP-QK may provide an intelligent drug delivery system that responds to the microenvironment and promotes regeneration and repair after cerebral ischemia/reperfusion injury. 展开更多
关键词 angiogenesis biomaterial blood-brain barrier cerebral ischemia/reperfusion injury control release drug delivery inflammation QK peptides matrix metalloproteinase-2 NEUROPROTECTION self-assembling nanofiber hydrogel
下载PDF
Endoplasmic reticulum stress and autophagy in cerebral ischemia/reperfusion injury:PERK as a potential target for intervention
3
作者 Ju Zheng Yixin Li +8 位作者 Ting Zhang Yanlin Fu Peiyan Long Xiao Gao Zhengwei Wang Zhizhong Guan Xiaolan Qi Wei Hong Yan Xiao 《Neural Regeneration Research》 SCIE CAS 2025年第5期1455-1466,共12页
Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cereb... Several studies have shown that activation of unfolded protein response and endoplasmic reticulum(ER)stress plays a crucial role in severe cerebral ischemia/reperfusion injury.Autophagy occurs within hours after cerebral ischemia,but the relationship between ER stress and autophagy remains unclear.In this study,we established experimental models using oxygen-glucose deprivation/reoxygenation in PC12 cells and primary neurons to simulate cerebral ischemia/reperfusion injury.We found that prolongation of oxygen-glucose deprivation activated the ER stress pathway protein kinase-like endoplasmic reticulum kinase(PERK)/eukaryotic translation initiation factor 2 subunit alpha(e IF2α)-activating transcription factor 4(ATF4)-C/EBP homologous protein(CHOP),increased neuronal apoptosis,and induced autophagy.Furthermore,inhibition of ER stress using inhibitors or by si RNA knockdown of the PERK gene significantly attenuated excessive autophagy and neuronal apoptosis,indicating an interaction between autophagy and ER stress and suggesting PERK as an essential target for regulating autophagy.Blocking autophagy with chloroquine exacerbated ER stress-induced apoptosis,indicating that normal levels of autophagy play a protective role in neuronal injury following cerebral ischemia/reperfusion injury.Findings from this study indicate that cerebral ischemia/reperfusion injury can trigger neuronal ER stress and promote autophagy,and suggest that PERK is a possible target for inhibiting excessive autophagy in cerebral ischemia/reperfusion injury. 展开更多
关键词 APOPTOSIS ATF4 AUTOPHAGY C/EBP homologous protein cerebral ischemia/reperfusion injury EIF2Α endoplasmic reticulum stress PERK
下载PDF
The action mechanism by which C1q/tumor necrosis factor-related protein-6 alleviates cerebral ischemia/reperfusion injury in diabetic mice 被引量:2
4
作者 Bo Zhao Mei Li +6 位作者 Bingyu Li Yanan Li Qianni Shen Jiabao Hou Yang Wu Lijuan Gu Wenwei Gao 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第9期2019-2026,共8页
Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of... Studies have shown that C1q/tumor necrosis factor-related protein-6 (CTRP6) can alleviate renal ischemia/reperfusion injury in mice. However, its role in the brain remains poorly understood. To investigate the role of CTRP6 in cerebral ischemia/reperfusion injury associated with diabetes mellitus, a diabetes mellitus mouse model of cerebral ischemia/reperfusion injury was established by occlusion of the middle cerebral artery. To overexpress CTRP6 in the brain, an adeno-associated virus carrying CTRP6 was injected into the lateral ventricle. The result was that oxygen injury and inflammation in brain tissue were clearly attenuated, and the number of neurons was greatly reduced. In vitro experiments showed that CTRP6 knockout exacerbated oxidative damage, inflammatory reaction, and apoptosis in cerebral cortical neurons in high glucose hypoxia-simulated diabetic cerebral ischemia/reperfusion injury. CTRP6 overexpression enhanced the sirtuin-1 signaling pathway in diabetic brains after ischemia/reperfusion injury. To investigate the mechanism underlying these effects, we examined mice with depletion of brain tissue-specific sirtuin-1. CTRP6-like protection was achieved by activating the sirtuin-1 signaling pathway. Taken together, these results indicate that CTRP6 likely attenuates cerebral ischemia/reperfusion injury through activation of the sirtuin-1 signaling pathway. 展开更多
关键词 brain C1q/tumor necrosis factor-related protein-6 cerebral apoptosis diabetes inflammation ischemia/reperfusion injury NEURON NEUROPROTECTION oxidative damage Sirt1
下载PDF
Cav3.2 channel regulates cerebral ischemia/reperfusion injury:a promising target for intervention 被引量:2
5
作者 Feibiao Dai Chengyun Hu +7 位作者 Xue Li Zhetao Zhang Hongtao Wang Wanjun Zhou Jiawu Wang Qingtian Geng Yongfei Dong Chaoliang Tang 《Neural Regeneration Research》 SCIE CAS CSCD 2024年第11期2480-2487,共8页
Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type ... Calcium influx into neurons triggers neuronal death during cerebral ischemia/reperfusion injury.Various calcium channels are involved in cerebral ischemia/reperfusion injury.Cav3.2 channel is a main subtype of T-type calcium channels.T-type calcium channel blockers,such as pimozide and mibefradil,have been shown to prevent cerebral ischemia/reperfusion injury-induced brain injury.However,the role of Cav3.2 channels in cerebral ischemia/reperfusion injury remains unclear.Here,in vitro and in vivo models of cerebral ischemia/reperfusion injury were established using middle cerebral artery occlusion in mice and high glucose hypoxia/reoxygenation exposure in primary hippocampal neurons.The results showed that Cav3.2 expression was significantly upregulated in injured hippocampal tissue and primary hippocampal neurons.We further established a Cav3.2 gene-knockout mouse model of cerebral ischemia/reperfusion injury.Cav3.2 knockout markedly reduced infarct volume and brain water content,and alleviated neurological dysfunction after cerebral ischemia/reperfusion injury.Additionally,Cav3.2 knockout attenuated cerebral ischemia/reperfusion injury-induced oxidative stress,inflammatory response,and neuronal apoptosis.In the hippocampus of Cav3.2-knockout mice,calcineurin overexpression offset the beneficial effect of Cav3.2 knockout after cerebral ischemia/reperfusion injury.These findings suggest that the neuroprotective function of Cav3.2 knockout is mediated by calcineurin/nuclear factor of activated T cells 3 signaling.Findings from this study suggest that Cav3.2 could be a promising target for treatment of cerebral ischemia/reperfusion injury. 展开更多
关键词 CALCINEURIN Cav3.2 channel cerebral ischemia/reperfusion hippocampus HYPOXIA/REOXYGENATION inflammatory response nuclear factor of activated T cells 3 oxidative stress primary hippocampal neurons stroke
下载PDF
Lactiplantibacillus plantarum AR113 alleviates microbiota dysbiosis of tongue coating and cerebral ischemia/reperfusion injury in rat
6
作者 Zhiqiang Xiong Gang Liu +5 位作者 Ling Fang Xiuming Li Yongjun Xia Guangqiang Wang Xin Song Lianzhong Ai 《Food Science and Human Wellness》 SCIE CAS CSCD 2024年第4期2132-2140,共9页
Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and r... Stroke is one of the leading causes of death and disability worldwide.However,information on stroke-related tongue coating microbiome(TCM)is limited,and whether TCM modulation could benefit for stroke prevention and rehabilitation is unknown.Here,TCM from stroke patients(SP)was characterized using molecular techniques.The occurrence of stroke resulted in TCM dysbiosis with significantly reduced species richness and diversity.The abundance of Prevotella,Leptotrichia,Actinomyces,Alloprevotella,Haemophilus,and TM7_[G-1]were greatly reduced,but common infection Streptococcus and Pseudomonas were remarkably increased.Furthermore,an antioxidative probiotic Lactiplantibacillus plantarum AR113 was used for TCM intervention in stroke rats with cerebral ischemia/reperfusion(I/R).AR113 partly restored I/R induced change of TCM and gut microbiota with significantly improved neurological deficit,relieved histopathologic change,increased activities of antioxidant enzymes,and decreased contents of oxidative stress biomarkers.Moreover,the gene expression of antioxidant-related proteins and apoptosis-related factors heme oxygenase-1(HO-1),superoxide dismutase(SOD),glutathione peroxidase(GSH-Px),nuclear factor erythroid 2-related factor 2(Nrf2),NAD(P)H:quinone oxidoreductase-1(NQO-1),and Bcl-2 was significantly increased,but cytochrome C,cleaved caspase-3,and Bax were markedly decreased in the brain by AR113 treatment.The results suggested that AR113 could ameliorate cerebral I/R injury through antioxidation and anti-apoptosis pathways,and AR113 intervention of TCM may have the application potential for stroke prevention and control. 展开更多
关键词 Stroke cerebral ischemia/reperfusion Tongue coating Lactiplantibacillus plantarum AR113 Probiotic intervention
下载PDF
Upregulation of CDGSH iron sulfur domain 2 attenuates cerebral ischemia/reperfusion injury 被引量:1
7
作者 Miao Hu Jie Huang +6 位作者 Lei Chen Xiao-Rong Sun Zi-Meng Yao Xu-Hui Tong Wen-Jing Jin Yu-Xin Zhang Shu-Ying Dong 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第7期1512-1520,共9页
CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebr... CDGSH iron sulfur domain 2 can inhibit ferroptosis,which has been associated with cerebral ischemia/reperfusion,in individuals with head and neck cancer.Therefore,CDGSH iron sulfur domain 2 may be implicated in cerebral ischemia/reperfusion injury.To validate this hypothesis in the present study,we established mouse models of occlusion of the middle cerebral artery and HT22 cell models of oxygen-glucose deprivation and reoxygenation to mimic cerebral ischemia/reperfusion injury in vivo and in vitro,respectively.We found remarkably decreased CDGSH iron sulfur domain 2 expression in the mouse brain tissue and HT22 cells.When we used adeno-associated virus and plasmid to up-regulate CDGSH iron sulfur domain 2 expression in the brain tissue and HT22 cell models separately,mouse neurological dysfunction was greatly improved;the cerebral infarct volume was reduced;the survival rate of HT22 cells was increased;HT22 cell injury was alleviated;the expression of ferroptosis-related glutathione peroxidase 4,cystine-glutamate antiporter,and glutathione was increased;the levels of malondialdehyde,iron ions,and the expression of transferrin receptor 1 were decreased;and the expression of nuclear-factor E2-related factor 2/heme oxygenase 1 was increased.Inhibition of CDGSH iron sulfur domain 2 upregulation via the nuclear-factor E2-related factor 2 inhibitor ML385 in oxygen-glucose deprived and reoxygenated HT22 cells blocked the neuroprotective effects of CDGSH iron sulfur domain 2 up-regulation and the activation of the nuclear-factor E2-related factor 2/heme oxygenase 1 pathway.Our data indicate that the up-regulation of CDGSH iron sulfur domain 2 can attenuate cerebral ischemia/reperfusion injury,thus providing theoretical support from the perspectives of cytology and experimental zoology for the use of this protein as a therapeutic target in patients with cerebral ischemia/reperfusion injury. 展开更多
关键词 cerebral ischemia/reperfusion injury CDGSH iron sulfur domain 2 ferroptosis glutathione peroxidase 4 heme oxygenase 1 HT22 nuclear-factor E2-related factor 2 oxygen-glucose deprivation/reoxygenation injury stroke transferrin receptor 1
下载PDF
A molecular probe carrying anti-tropomyosin 4 for early diagnosis of cerebral ischemia/reperfusion injury
8
作者 Teng-Fei Yu Kun Wang +5 位作者 Lu Yin Wen-Zhe Li Chuan-Ping Li Wei Zhang Jie Tian Wen He 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第6期1321-1324,共4页
In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cere... In vivo imaging of cerebral ischemia/reperfusion injury remains an important challenge.We injected porous Ag/Au@SiO_(2) bimetallic hollow nanoshells carrying anti-tropomyosin 4 as a molecular probe into mice with cerebral ischemia/reperfusion injury and observed microvascular changes in the brain using photoacoustic imaging with ultrasonography.At each measured time point,the total photoacoustic signal was significantly higher on the affected side than on the healthy side.Twelve hours after reperfusion,cerebral perfusion on the affected side increased,cerebrovascular injury worsened,and anti-tropomyosin 4 expression increased.Twenty-four hours after reperfusion and later,perfusion on the affected side declined slowly and stabilized after 1 week;brain injury was also alleviated.Histopathological and immunohistochemical examinations confirmed the brain injury tissue changes.The nanoshell molecular probe carrying anti-tropomyosin 4 has potential for use in early diagnosis of cerebral ischemia/reperfusion injury and evaluating its progression. 展开更多
关键词 cerebral ischemia/reperfusion injury diagnosis dynamic monitoring ischemic stroke middle cerebral artery occlusion molecular probe NANOSHELLS photoacoustic imaging tropomyosin 4 ULTRASOUND
下载PDF
Vav1 promotes inflammation and neuronal apoptosis in cerebral ischemia/reperfusion injury by upregulating microglial and NLRP3 inflammasome activation 被引量:6
9
作者 Jing Qiu Jun Guo +3 位作者 Liang Liu Xin Liu Xianhui Sun Huisheng Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第11期2436-2442,共7页
Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a gua... Microglia,which are the resident macrophages of the central nervous system,are an important part of the inflammatory response that occurs after cerebral ischemia.Vav guanine nucleotide exchange factor 1(Vav1) is a guanine nucleotide exchange factor that is related to microglial activation.However,how Vav1 participates in the inflammato ry response after cerebral ischemia/reperfusion inj ury remains unclea r.In this study,we subjected rats to occlusion and repe rfusion of the middle cerebral artery and subjected the BV-2 mic roglia cell line to oxygen-glucose deprivatio n/reoxygenation to mimic cerebral ischemia/repe rfusion in vivo and in vitro,respectively.We found that Vav1 levels were increased in the brain tissue of rats subjected to occlusion and reperfusion of the middle cerebral arte ry and in BV-2 cells subjected to oxygen-glucose deprivation/reoxygenation.Silencing Vav1 reduced the cerebral infarct volume and brain water content,inhibited neuronal loss and apoptosis in the ischemic penumbra,and im p roved neurological function in rats subjected to occlusion and repe rfusion of the middle cerebral artery.Further analysis showed that Vav1 was almost exclusively localized to microglia and that Vav1 downregulation inhibited microglial activation and the NOD-like receptor pyrin 3(NLRP3) inflammasome in the ischemic penumbra,as well as the expression of inflammato ry facto rs.In addition,Vov1 knoc kdown decreased the inflammatory response exhibited by BV-2 cells after oxygen-glucose deprivation/reoxyge nation.Taken together,these findings show that silencing Vav1 attenuates inflammation and neuronal apoptosis in rats subjected to cerebral ischemia/repe rfusion through inhibiting the activation of mic roglia and NLRP3 inflammasome. 展开更多
关键词 apoptosis cerebral ischemia/reperfusion inflammatory cytokines microglia microglial activation middle cerebral artery occlusion neuroprotection NLRP3 inflammasome oxygen-glucose deprivation/reoxygenation Vav1
下载PDF
DNA hypomethylation promotes learning and memory recovery in a rat model of cerebral ischemia/reperfusion injury 被引量:3
10
作者 Guang Shi Juan Feng +1 位作者 Ling-Yan Jian Xin-Yu Fan 《Neural Regeneration Research》 SCIE CAS CSCD 2023年第4期863-868,共6页
Cerebral ischemia/reperfusion injury impairs learning and memory in patients.Studies have shown that synaptic function is involved in the formation and development of memory,and that DNA methylation plays a key role i... Cerebral ischemia/reperfusion injury impairs learning and memory in patients.Studies have shown that synaptic function is involved in the formation and development of memory,and that DNA methylation plays a key role in the regulation of learning and memory.To investigate the role of DNA hypomethylation in cerebral ischemia/reperfusion injury,in this study,we established a rat model of cerebral ischemia/reperfusion injury by occlusion of the middle cerebral artery and then treated the rats with intraperitoneal 5-aza-2′-deoxycytidine,an inhibitor of DNA methylation.Our results showed that 5-aza-2′-deoxycytidine markedly improved the neurological function,and cognitive,social and spatial memory abilities,and dose-dependently increased the synaptic density and the expression of SYP and SHANK2 proteins in the hippocampus in a dose-dependent manner in rats with cerebral ischemia/reperfusion injury.The effects of 5-aza-2′-deoxycytidine were closely related to its reduction of genomic DNA methylation and DNA methylation at specific sites of the Syp and Shank2 genes in rats with cerebral ischemia/reperfusion injury.These findings suggest that inhibition of DNA methylation by 5-aza-2′-deoxycytidine promotes the recovery of learning and memory impairment in a rat model of cerebral ischemia/reperfusion injury.These results provide theoretical evidence for stroke treatment using epigenetic methods. 展开更多
关键词 cognitive memory DNA methylation DNMT1 hippocampus ischemia/reperfusion social memory spatial memory TET1 transient middle cerebral artery occlusion 5-aza-2′-deoxycytidine
下载PDF
Ligustrazine monomer against cerebral ischemia/reperfusion injury 被引量:55
11
作者 Hai-jun Gao Peng-fei Liu +7 位作者 Pei-wen Li Zhuo-yan Huang Feng-bo Yu Ting Lei Yong Chen Ye Cheng Qing-chun Mu Hai-yan Huang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期832-840,共9页
Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustraz... Ligustrazine (2,3,5,6-tetramethylpyrazine) is a major active ingredient of the Szechwan lovage rhizome and is extensively used in treatment of ischemic cerebrovascular disease. The mecha- nism of action of ligustrazine use against ischemic cerebrovascular diseases remains unclear at present. This study summarizes its protective effect, the optimum time window of administra- tion, and the most effective mode of administration for clinical treatment of cerebral ischemia/ reperfusion injury. We examine the effects of ligustrazine on suppressing excitatory amino acid release, promoting migration, differentiation and proliferation of endogenous neural stem cells. We also looked at its effects on angiogenesis and how it inhibits thrombosis, the inflammatory response, and apoptosis after cerebral ischemia. We consider that ligustrazine gives noticeable protection from cerebral ischemia/reperfusion injury. The time window of ligustrazine admin- istration is limited. The protective effect and time window of a series of derivative monomers of ligustrazine such as 2-[(1,1-dimethylethyl)oxidoimino]methyl]-3,5,6-trimethylpyrazine, CXC137 and CXC 195 after cerebral ischemia were better than ligustrazine. 展开更多
关键词 nerve regeneration LIGUSTRAZINE ischemia cerebral ischemia/reperfusion injury neuralregeneration
下载PDF
Electroacupuncture preconditioning protects against focal cerebral ischemia/reperfusion injury via suppression of dynamin-related protein 1 被引量:20
12
作者 Gao-feng Zhang Pei Yang +7 位作者 Zeng Yin Huai-long Chen Fu-guo Ma Bin Wang Li-xin Sun Yan-lin Bi Fei Shi Ming-shan Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第1期86-93,共8页
Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynami... Electroacupuncture preconditioning at acupoint Baihui (GV20) can reduce focal cerebral ischemia/reperfusion injury. However, the precise protective mechanism remains unknown. Mitochondrial fission mediated by dynamin-related protein 1 (Drp1) can trigger neuronal apoptosis following cerebral ischemia/reperfusion injury. Herein, we examined the hypothesis that electroacupuncture pretreatment can regulate Drp1, and thus inhibit mitochondrial fission to provide cerebral protection. Rat models of focal cerebral ischemia/reperfusion injury were established by middle cerebral artery occlusion at 24 hours after 5 consecutive days of preconditioning with electroacupuncture at GV20 (depth 2 mm, intensity 1 mA, frequency 2/15 Hz, for 30 minutes, once a day). Neurological function was assessed using the Longa neurological deficit score. Pathological changes in the ischemic penumbra on the injury side were assessed by hematoxylin-eosin staining. Cellular apoptosis in the ischemic penumbra on the injury side was assessed by terminal deoxyribonucleotidyl transferase-mediated dUTP-digoxigenin nick end labeling staining. Mitochondrial ultrastructure in the ischemic penumbra on the injury side was assessed by transmission electron microscopy. Drp1 and cytochrome c expression in the ischemic penumbra on the injury side were assessed by western blot assay. Results showed that electroacupuncture preconditioning decreased expression of total and mitochondrial Drp1, decreased expression of total and cytosolic cytochrome c, maintained mitochondrial morphology and reduced the proportion of apoptotic cells in the ischemic penumbra on the injury side, with associated improvements in neurological function. These data suggest that electroacupuncture preconditioning-induced neuronal protection involves inhibition of the expression and translocation of Drp1. 展开更多
关键词 nerve regeneration ELECTROACUPUNCTURE focal cerebral ischemia/reperfusion injury dynamin-related protein 1 death-associated protein kinases mitochondrial dynamics mitochondrial ultrastructure APOPTOSIS cytochrome c neural regeneration
下载PDF
Electroacupuncture reduces apoptotic index and inhibits p38 mitogen-activated protein kinase signaling pathway in the hippocampus of rats with cerebral ischemia/reperfusion injury 被引量:18
13
作者 Xiao Lan Xin Zhang +3 位作者 Guo-ping Zhou Chun-xiao Wu Chun Li Xiu-hong Xu 《Neural Regeneration Research》 SCIE CAS CSCD 2017年第3期409-416,共8页
Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebr... Electroacupuncture attenuates cerebral hypoxia and neuronal apoptosis induced by cerebral ischemia/reperfusion injury.To further identify the involved mechanisms,we assumed that electroacupuncture used to treat cerebral ischemia/reperfusion injury was associated with the p38 mitogen-activated protein kinase(MAPK) signaling pathway.We established rat models of cerebral ischemia/reperfusion injury using the modified Zea-Longa's method.At 30 minutes before model establishment,p38 MAPK blocker SB20358 was injected into the left lateral ventricles.At 1.5 hours after model establishment,electroacupuncture was administered at acupoints of Chize(LU5),Hegu(LI4),Zusanli(ST36),and Sanyinjiao(SP6) for 20 minutes in the affected side.Results showed that the combination of EA and SB20358 injection significantly decreased neurologic impairment scores,but no significant differences were determined among different interventional groups.Hematoxylin-eosin staining also showed reduced brain tissue injuries.Compared with the SB20358 group,the cells were regularly arranged,the structures were complete,and the number of viable neurons was higher in the SB20358 + electroacupuncture group.Terminal deoxynucleotidyl transferase(Td T)-mediated d UTP nick-end labeling assay showed a decreased apoptotic index in each group,with a significant decrease in the SB20358 + electroacupuncture group.Immunohistochemistry revealed reduced phosphorylated p38 expression at 3 days in the electroacupuncture group and SB20358 + electroacupuncture group compared with the ischemia/reperfusion group.There was no significant difference in phosphorylated p38 expression between the ischemia/reperfusion group and SB20358 group.These findings confirmed that the electroacupuncture effects on mitigating cerebral ischemia/reperfusion injury are possibly associated with the p38 MAPK signaling pathway.A time period of 3 days could promote the repair of ischemic cerebral nerves. 展开更多
关键词 nerve regeneration brain injury ELECTROACUPUNCTURE cell apoptosis cerebral ischemia/reperfusion injury neurological impairment score morphological changes immunohistoehemical assay p38 mitogen-activated protein kinases phosphorylated p38 HIPPOCAMPUS neural regeneration
下载PDF
Comparison of the anti-apoptotic effects of 15-and 35-minute suspended moxibustion after focal cerebral ischemia/reperfusion injury 被引量:16
14
作者 Ai-jiao Xiao Lin He +2 位作者 Xin Ouyang Jie-min Liu Ming-ren Chen 《Neural Regeneration Research》 SCIE CAS CSCD 2018年第2期257-264,共8页
Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibusti... Heat-sensitive suspended moxibustion has a neuroprotective effect against focal cerebral ischemia/reperfusion injury, but the underly- ing mechanisms remain unclear. The duration of heat-sensitive suspended moxibustion (usually from 30 minutes to 1 hour) is longer than traditional suspended moxibustion (usually 15 minutes). However, the effects of 15- and 35-minute suspended moxibustion in rats with cerebra/ischemia/reperfusion injury are poorly understood. In this study, we performed 15- or 35-minute suspended moxibustion at acupoint Dazhui (GV14) in an adult rat model of focal cerebral ischemia/reperfusion injury. Infarct volume was evaluated with the 2,3,5-triphenyltetrazolium chloride assay. Histopathological changes and neuronal apoptosis at the injury site were assessed by hematoxy- lin-eosin staining and terminal deoxynucleotidyl transferase dUTP nick end labeling assay. Caspase-9 and caspase-3 expression at the in- jury site was detected using immunofluorescent staining. Bax and Bcl-2 expression at the injury site was assessed using western blot assay. In the 35-minute moxibustion group, infarct volume was decreased, neuronal apoptosis was reduced, caspase-9, caspase-3 and Bax expres- sion was lower, and Bcl-2 expression was increased, compared with the 15-minute moxibustion group. Our findings show that 35-minute moxibustion has a greater anti-apoptotic effect than 15-minute moxibustion after focal cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration suspended moxibustion middle cerebral artery occlusion cerebral ischemia/reperfusion injury infarct volume apoptosis Bcl-2 BAX CASPASE-9 CASPASE-3 neural regeneration traditional Chinese medical therapy
下载PDF
Picroside Ⅱ down-regulates matrix metalloproteinase-9 expression following cerebral ischemia/reperfusion injury in rats 被引量:13
15
作者 Xiang Li Xinying Xu +4 位作者 Zhen Li Yunliang Guo Qin Li Xiaodan Li Zhen Zhou 《Neural Regeneration Research》 SCIE CAS CSCD 2010年第18期1403-1407,共5页
Studies have shown that Picroside Ⅱ attenuates inflammatory reactions following brain ischemia through the inhibition of the TLR-4-NF-KB signal transduction pathway, and ameliorates cerebral edema through the reducti... Studies have shown that Picroside Ⅱ attenuates inflammatory reactions following brain ischemia through the inhibition of the TLR-4-NF-KB signal transduction pathway, and ameliorates cerebral edema through the reduction of aquaporin-4 expression. Matrix metalloproteinase-9 (MMP-9), located downstream of the TLR-4-NF-KB signal transduction pathway, can degrade the neurovascular matrix, damage the blood-brain barrier to induce cerebral edema, and directly result in neuronal apoptosis and brain injury, Therefore, the present study further observed MMP-9 expression in the brain tissues of rats with cerebral ischemia/reperfusion injury following Picroside Ⅱ treatment. Results demonstrated that Picroside Ⅱ significantly reduced MMP-9 expression in ischemic brain tissues, as well as neuronal apoptosis and brain infarct volume, suggesting Picroside Ⅱ exhibits neuroprotection by down-regulating MMP-9 expression and inhibiting cell apoptosis. 展开更多
关键词 Picroside cerebral ischemia/reperfusion injury APOPTOSIS matrix metalloproteinase-9 RATS neural regeneration
下载PDF
Let-7a gene knockdown protects against cerebral ischemia/reperfusion injury 被引量:9
16
作者 Zhong-kun Wang Fang-fang Liu +2 位作者 Yu Wang Xin-mei Jiang Xue-fan Yu 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第2期262-269,共8页
The micro RNA(mi RNA) let-7 was one of the first mi RNAs to be discovered, and is highly conserved and widely expressed among species. let-7 expression increases in brain tissue after cerebral ischemia/reperfusion i... The micro RNA(mi RNA) let-7 was one of the first mi RNAs to be discovered, and is highly conserved and widely expressed among species. let-7 expression increases in brain tissue after cerebral ischemia/reperfusion injury; however, no studies have reported let-7 effects on nerve injury after cerebral ischemia/reperfusion injury. To investigate the effects of let-7 gene knockdown on cerebral ischemia/reperfusion injury, we established a rat model of cerebral ischemia/reperfusion injury. Quantitative reverse transcription-polymerase chain reaction demonstrated that 12 hours after cerebral ischemia/reperfusion injury, let-7 expression was up-regulated, peaked at 24 hours, and was still higher than that in control rats after 72 hours. Let-7 gene knockdown in rats suppressed microglial activation and inflammatory factor release, reduced neuronal apoptosis and infarct volume in brain tissue after cerebral ischemia/reperfusion injury. Western blot assays and luciferase assays revealed that mitogen-activated protein kinase phosphatase-1(MKP1) is a direct target of let-7. Let-7 enhanced phosphorylated p38 mitogen-activated protein kinase(MAPK) and c-Jun N-terminal kinase(JNK) expression by down-regulating MKP1. These findings suggest that knockdown of let-7 inhibited the activation of p38 MAPK and JNK signaling pathways by up-regulating MKP1 expression, reduced apoptosis and the inflammatory reaction, and exerted a neuroprotective effect following cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration cerebral ischemia/reperfusion injury LET-7 mitogen-activated protein kinase phosphatase-1 apoptosis MICROGLIA inflammation mitogen-activated protein kinase NEURONS c-Jun N-terminal kinase gene knockdown brain injury neural regeneration
下载PDF
13-Methyltetradecanoic acid mitigates cerebral ischemia/reperfusion injury 被引量:8
17
作者 Juan Yu Li-nan Yang +4 位作者 Yan-yun Wu Bao-hua Li Sheng-mei Weng Chun-lan Hu Yong-ling Han 《Neural Regeneration Research》 SCIE CAS CSCD 2016年第9期1431-1437,共7页
13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous... 13-Methyltetradecanoic acid can stabilize cell membrane and have anti-inflammatory, antioxidant and anti-apoptotic effects. Previous studies mainly focused on peripheral nerve injury, but seldom on the central nervous system. We investigated whether these properties of 13-methyltetradecanoic acid have a neuroprotective effect on focal cerebral ischemia/reperfusion injury, and detected the expression of basic fibroblast growth factor and vascular endothelial growth factor. This study established rat models of middle cerebral artery occlusion/ reperfusion injury by ischemia for 2 hours and reperfusion for 24 hours. At the beginning of reperfusion, 13-methyltetradecanoic acid 10, 40 or 80 mg/kg was injected into the tail vein. Results found that various doses of 13-methyltetradecanoic acid effectively reduced infarct volume, mitigate cerebral edema, and increased the mRNA and protein expression of basic fibroblast growth factor and vascular endothe- lial growth factor at 24 hours of reperfusion. The effect was most significant in the 13-methyltetradecanoic acid 40 and 80 mg/kg groups. The findings suggest that 13-methyltetradecanoic acid can relieve focal ischemia/reperfusion injury immediately after reperfusion, stimu- late the upregulation of basic fibroblast growth factor and vascular endothelial growth factor to exert neuroprotective effects. 展开更多
关键词 nerve regeneration brain injury 13-methyltetradecanoic acid cerebral ischemia/reperfusion injury basic fibroblast growth factor vascular endothelial growth factor cerebral infarction cerebral edema neural regeneration
下载PDF
Lateral intracerebroventricular injection of Apelin-13 inhibits apoptosis after cerebral ischemia/reperfusion injury 被引量:7
18
作者 Xiao-ge Yan Bao-hua Cheng +4 位作者 Xin Wang Liang-cai Ding Hai-qing Liu Jing Chen Bo Bai 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第5期766-771,共6页
Apelin- 13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the la... Apelin- 13 inhibits neuronal apoptosis caused by hydrogen peroxide, yet apoptosis following cerebral ischemia-reperfusion injury has rarely been studied. In this study, Apelin-13 (0.1 μg/g) was injected into the lateral ventricle of middle cerebral artery occlusion model rats. TTC, TUNEL, and immuno- histochemical staining showed that compared with the cerebral ischemia/reperfusion group, infarct volume and apoptotic cell number at the ischemic penumbra region were decreased in the Apelin-13 treatment group. Additionally, Apelin-13 treatment increased Bcl-2 immtmoreactivity and decreased caspase-3 immunoreactivity, Our findings suggest that Apelin-13 is neuroprotective against cerebral ischemia/reperfusion injury through inhibition of neuronal apoptosis. 展开更多
关键词 nerve regeneration brain injury NEUROPROTECTION cerebral ischemia/reperfusion injury lateral intracerebroventricular injection APELIN-13 nerve apoptosis Bcl-2 caspase-3 NSFC grants neural regeneration
下载PDF
Hypoxic preconditioning reduces NLRP3 inflammasome expression and protects against cerebral ischemia/reperfusion injury 被引量:8
19
作者 Yi-Qiang Pang Jing Yang +2 位作者 Chun-Mei Jia Rui Zhang Qi Pang 《Neural Regeneration Research》 SCIE CAS CSCD 2022年第2期395-400,共6页
Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuo... Hypoxic preconditioning can protect against cerebral ischemia/reperfusion injury. However, the underlying mechanisms that mediate this effect are not completely clear. In this study, mice were pretreated with continuous, intermittent hypoxic preconditioning;1 hour later, cerebral ischemia/reperfusion models were generated by middle cerebral artery occlusion and reperfusion. Compared with control mice, mice with cerebral ischemia/reperfusion injury showed increased Bederson neurological function scores, significantly increased cerebral infarction volume, obvious pathological damage to the hippocampus, significantly increased apoptosis;upregulated interleukin-1β, interleukin-6, and interleukin-8 levels in brain tissue;and increased expression levels of NOD-like receptor family pyrin domain containing 3(NLRP3), NLRP inflammasome-related protein caspase-1, and gasdermin D. However, hypoxic preconditioning significantly inhibited the above phenomena. Taken together, these data suggest that hypoxic preconditioning mitigates cerebral ischemia/reperfusion injury in mice by reducing NLRP3 inflammasome expression. This study was approved by the Medical Ethics Committee of the Fourth Hospital of Baotou, China(approval No. DWLL2019001) in November 2019. 展开更多
关键词 apoptosis CASPASE-1 cell death cerebral ischemia/reperfusion injury gasdermin D hippocampus hypoxic preconditioning NLRP3 inflammasome
下载PDF
MicroRNAs: a novel promising therapeutic target for cerebral ischemia/reperfusion injury? 被引量:6
20
作者 Xiao-li Min Ting-yong Wang +3 位作者 Yi Cao Jia Liu Jin-tao Li Ting-hua Wang 《Neural Regeneration Research》 SCIE CAS CSCD 2015年第11期1799-1808,共10页
To determine the molecular mechanism of cerebral ischemia/reperfusion injury, we examined the micro RNA(mi RNA) expression profile in rat cortex after focal cerebral ischemia/reperfusion injury using mi RNA microarr... To determine the molecular mechanism of cerebral ischemia/reperfusion injury, we examined the micro RNA(mi RNA) expression profile in rat cortex after focal cerebral ischemia/reperfusion injury using mi RNA microarrays and bioinformatic tools to systematically analyze Gene Ontology(GO) function classifications, as well as the signaling pathways of genes targeted by these differentially expressed mi RNAs. Our results show significantly changed mi RNA expression profiles in the reperfusion period after focal cerebral ischemia, with a total of 15 mi RNAs up-regulated and 44 mi RNAs down-regulated. Target genes of these differentially expressed mi RNAs were mainly involved in metabolic and cellular processes, which were identified as hub nodes of a mi RNA-GO-network. The most correlated pathways included D-glutamine and D-glutamate metabolism, the renin-angiotensin system, peroxisomes, the PPAR signaling pathway, SNARE interactions in vesicular transport, and the calcium signaling pathway. Our study suggests that mi RNAs play an important role in the pathological process of cerebral ischemia/reperfusion injury. Understanding mi RNA expression and function may shed light on the molecular mechanism of cerebral ischemia/reperfusion injury. 展开更多
关键词 nerve regeneration MICRORNA therapeutic target cerebral ischemia/reperfusion injury miRNA expression profiles bioinformatics analysis Gene Ontology analysis molecular mechanism KEGG pathway neural regeneration
下载PDF
上一页 1 2 250 下一页 到第
使用帮助 返回顶部