Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare pro...Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare providers.However,the open wireless channel and limited resources of sensors bring security challenges.To ensure physiological data security,this paper provides an efficient Certificateless Public Key Infrastructure Heterogeneous Ring Signcryption(CP-HRSC)scheme,in which sensors are in a certificateless cryptosystem(CLC)environment,and the server is in a public key infrastructure(PKI)environment.CLC could solve the limitations of key escrow in identity-based cryptography(IBC)and certificate management for public keys in PKI.While PKI is suited for the server because it is widely used on the Internet.Furthermore,this paper designs a ring signcryption method that allows the controller to anonymously encrypt physiological data on behalf of a set of sensors,but the server does not exactly know who the sensor is.The construction of this paper can achieve anonymity,confidentiality,authentication,non-repudiation,and integrity in a logically single step.Under the computational Diffie-Hellman(CDH)problem,the formal security proof is provided in the random oracle model(ROM).This paper demonstrates that this scheme has indistinguishability against adaptive chosen ciphertext attacks(IND-CCA2)and existential unforgeability against adaptive chosen message attacks(EUF-CMA).In terms of computational cost and energy usage,a comprehensive performance analysis demonstrates that the proposed scheme is the most effective.Compared to the three existing schemes,the computational cost of this paper’s scheme is reduced by about 49.5%,4.1%,and 8.4%,and the energy usage of our scheme is reduced by about 49.4%,3.7%,and 14.2%,respectively.展开更多
The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the au...The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.展开更多
基金supported by the Postgraduate Research&Practice Innovation Program of Jiangsu Province (Grant No.SJCX22_1677).
文摘Wireless body area networks(WBANs)are an emerging technology for the real-time monitoring of physiological signals.WBANs provide a mechanism for collecting,storing,and transmitting physiological data to healthcare providers.However,the open wireless channel and limited resources of sensors bring security challenges.To ensure physiological data security,this paper provides an efficient Certificateless Public Key Infrastructure Heterogeneous Ring Signcryption(CP-HRSC)scheme,in which sensors are in a certificateless cryptosystem(CLC)environment,and the server is in a public key infrastructure(PKI)environment.CLC could solve the limitations of key escrow in identity-based cryptography(IBC)and certificate management for public keys in PKI.While PKI is suited for the server because it is widely used on the Internet.Furthermore,this paper designs a ring signcryption method that allows the controller to anonymously encrypt physiological data on behalf of a set of sensors,but the server does not exactly know who the sensor is.The construction of this paper can achieve anonymity,confidentiality,authentication,non-repudiation,and integrity in a logically single step.Under the computational Diffie-Hellman(CDH)problem,the formal security proof is provided in the random oracle model(ROM).This paper demonstrates that this scheme has indistinguishability against adaptive chosen ciphertext attacks(IND-CCA2)and existential unforgeability against adaptive chosen message attacks(EUF-CMA).In terms of computational cost and energy usage,a comprehensive performance analysis demonstrates that the proposed scheme is the most effective.Compared to the three existing schemes,the computational cost of this paper’s scheme is reduced by about 49.5%,4.1%,and 8.4%,and the energy usage of our scheme is reduced by about 49.4%,3.7%,and 14.2%,respectively.
基金Supported by the National Natural Science Foundation of China(60903175,60703048)the Natural Science Foundation of Hubei Province (2009CBD307,2008CDB352)
文摘The decryption participant's private key share for decryption is delegated by key generation center in the threshold IBE scheme.However,a key generation center which is absolutely trustworthy does not exist.So the author presents a certificateless threshold public key encryption scheme.Collaborating with an administrator,the decryption participant generates his whole private key share for decryption in the scheme.The administrator does not know the decryption participant's private key share for decryption.Making use of q-SDH assumption,the author constructs a certificateless threshold public key encryption scheme.The security of the scheme is eventually reduced to the solving of Decisional Bilinear Diffie-Hellman problem.Moreover,the scheme is secure under the chosen ciphertext attack in the standard model.