期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
UNIFORM CONVERGENCE OF CES■RO MEANS OF NEGATIVE ORDER OF DOUBLE TRIGONOMETRIC FOURIER SERIES
1
作者 U.Goginava 《Analysis in Theory and Applications》 2007年第3期255-265,共11页
In this paper we prove that if f ∈ C ([-π, π]^2) and the function f is bounded partial p-variation for some p ∈[1, +∞), then the double trigonometric Fourier series of a function f is uniformly (C;-α,-β) ... In this paper we prove that if f ∈ C ([-π, π]^2) and the function f is bounded partial p-variation for some p ∈[1, +∞), then the double trigonometric Fourier series of a function f is uniformly (C;-α,-β) summable (α+β 〈 1/p,α,β 〉 0) in the sense of Pringsheim. If α + β ≥ 1/p, then there exists a continuous function f0 of bounded partial p-variation on [-π,π]^2 such that the Cesàro (C;-α,-β) means σn,m^-α,-β(f0;0,0) of the double trigonometric Fourier series of f0 diverge over cubes. 展开更多
关键词 Fourier series bounded variation. cesàro means
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部