p-tert-Butylcalix[4]diazacrown-4 telomer, which contains hard and soft ion binding sites, was synthesized. It exhibited high selectivity toward cesium ions. The binding sites may complex alkali metal ions selectively.
A nickel hexacyanoferrate(NiHCF)film electrode was prepared with NiHCF,conductive carbon black,and polyvinylidene difluoride,which was coated on graphite plate substrate for selective extraction of Cs^(+)ions by using...A nickel hexacyanoferrate(NiHCF)film electrode was prepared with NiHCF,conductive carbon black,and polyvinylidene difluoride,which was coated on graphite plate substrate for selective extraction of Cs^(+)ions by using electrochemically switched ion exchange(ESIX)technology.A potential-responsive ionpump system for efficient extraction of Cs+ions was designed,and the effect of wet film thicknesses,charging modes,flow rates,and chamber widths on Cs+ions extraction performance was investigated.In the system,the adsorption capacity and removal percentage of Cs^(+)ions on the NiHCF film electrode reached as high as 147.69 mg·g^(-1)and 92.47%,respectively.Furthermore,the NiHCF film electrode showed high selectivity for Cs^(+)ions and stability.After seven cycles of adsorption/desorption,the desorption percentage could reach about 100%.The excellent Cs^(+)extraction performance should be attributed to the strong driving force produced by the potential-responsive ion-pumping effect in the ESIX process,as well as the low ion transfer resistance of the film electrode which is caused by the special crystal structure of NiHCF.In addition,the NiHCF film electrode was implemented to work together with the bismuth oxybromide(BiOBr)film electrode to accomplish the simultaneous extraction of Cs^(+)and Br^(-).And the adsorption capacity and removal percentage of Br^(-)ions on the BiOBr film electrode reached 69.53 mg·g^(-1)and 77.32%,correspondingly.It is expected that such a potential-responsive ion-pump system based on NiHCF and BiOBr film electrodes could be used for the selective extraction and concentration of Cs^(+)and Br^(-)ions from salt lake brine.展开更多
The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BA...The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.展开更多
A new chemically modified carbon paste electrode for cesium(I) ion determination based on potassium zinc hexacyan-oferrate (PZHCF) as an ionophore was prepared. The electrode exhibits a Nernstian response for Cs(I) io...A new chemically modified carbon paste electrode for cesium(I) ion determination based on potassium zinc hexacyan-oferrate (PZHCF) as an ionophore was prepared. The electrode exhibits a Nernstian response for Cs(I) ions over a wide concentration range from 1 × 10-6 to 1 × 10-1 mol·L-1 with a slope of 58 ± 0.5 mV·decade-1. It has a response time of about 35 s and can be used for a period of 3 months with good reproducibility. Detection limit obtained in the optimal conditions was 3 × 10-7 mol·L-1. The potentiometric response is independent of the pH of the solution in the pH range 4.0 - 8.0. The electrode possesses the advantages of low resistance, fast response over a variety of other cations. The proposed electrode is applied as a sensor for the determination of Cs(I) ion concentration in different samples solutions. The results showed a good correlation with the data obtained by atomic absorption spectrometric method.展开更多
A liquid solid semi-moving bed with non-mechanical particle transport system is proposed and used for fractionation of cesium ion in wastewater. The particle transport system, which consists of a suction chamber, a mi...A liquid solid semi-moving bed with non-mechanical particle transport system is proposed and used for fractionation of cesium ion in wastewater. The particle transport system, which consists of a suction chamber, a mixing chamber, a nozzle and a riser tube, is designed to be controlled completely by hydraulic force. Experiments show that continuous feeding and discharging of resin can be realized by the transport system. The removal of cesium ion from wastewater is realized, The concentration of cesium ion in effluent liquid remains below 0,1g·L^-1 (the initial concentration is 5,3g·L^-1) during the 73 hours' experiment. The average exchange capacity of resin discharged from the bed is 0.57mmol,(g dry resin)^-1, which is close to the saturated capacity of 0.65mmol·g^-1. And it is also proved that the non-homogeneity of particle vertical velocity along the radial direction can seriously influence the ion-exchange process.展开更多
Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switc...Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switched ion exchange (ESIX) electrode in a packed bed for continuous separation for cesium ions. The morphologies of the prepared electrodes were characterized by scanning electron microscopy and the effects of solution concentration on the ion-exchange capacity of the electrodes were investigated by cyclic voltammetry technique. Cycling stability and long-term storage stability of NiHCF/PTCF electrodes were also studied. The NiHCF/PTCF electrodes with excellent ion-exchange ability were used to assemble a diaphragm-isolated ESIX reactor for cesium separation. Continuous separation of cesium and regeneration of NiHCF/PTCF electrode based on the diaphragm-isolated reactor were performed in a laboratory-scale two-electrode system.展开更多
The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particula r, the effects of neodymium on the cesium ion exchange an...The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particula r, the effects of neodymium on the cesium ion exchange and the Cs+ selectivity v ariation on Cs-IS owing to introduction of rare earth elements into HLLW were s tudied. Though rare earth elements exhibit a small influence on the distributio n coefficient for Cs+, they impair Cs-exchange capacity of Cs-IS to some ext ent. This interruption on the selectivity to Cs+ can be significantly eliminat ed provided an appropriate ratio of liquid to solid V:m is used.展开更多
Standard Gibbs energies of transfer,△Gθt,of Tl(Ⅰ)from water to aqueous sucrose and aqueous glucose solutions(mass fractions of sucrose and glucose W=0,010,020,030,040 and 050)were determined by po...Standard Gibbs energies of transfer,△Gθt,of Tl(Ⅰ)from water to aqueous sucrose and aqueous glucose solutions(mass fractions of sucrose and glucose W=0,010,020,030,040 and 050)were determined by polarography at 298±1K.In aqueous sucrose and glucose solutions containing 50×10-2mol·L-1LiClO4,the reversible halfwave potential and the diffusion coefficients for Tl(Ⅰ)were determined,respectively.Values of △Gθt,obtained from the reversible halfwave potentials vs.the ferrocene electrode scale,are negative and these decrease with increasing concentration of sucrose and glucose,indicating increasing stability of Tl(Ⅰ)in sucrosewater and glucosewater solutions.The △Gθt values were split into electrostatic and chemical contributions.The decreased chemical contribution shows that the mixtures are more basic than pure water.The experimental results were discussed in terms of solutesolvent and solutesolute interactions in the ternary systems.展开更多
基金Financial supports from the National Natural Science Foundation of China(No.20602015)are gratefully acknowledged.
文摘p-tert-Butylcalix[4]diazacrown-4 telomer, which contains hard and soft ion binding sites, was synthesized. It exhibited high selectivity toward cesium ions. The binding sites may complex alkali metal ions selectively.
基金supported by the National Natural Science Foundation of China(22108188,U21A20303,U20A20141)CAS Project for Young Scientists in Basic Research(YSBR-039)。
文摘A nickel hexacyanoferrate(NiHCF)film electrode was prepared with NiHCF,conductive carbon black,and polyvinylidene difluoride,which was coated on graphite plate substrate for selective extraction of Cs^(+)ions by using electrochemically switched ion exchange(ESIX)technology.A potential-responsive ionpump system for efficient extraction of Cs+ions was designed,and the effect of wet film thicknesses,charging modes,flow rates,and chamber widths on Cs+ions extraction performance was investigated.In the system,the adsorption capacity and removal percentage of Cs^(+)ions on the NiHCF film electrode reached as high as 147.69 mg·g^(-1)and 92.47%,respectively.Furthermore,the NiHCF film electrode showed high selectivity for Cs^(+)ions and stability.After seven cycles of adsorption/desorption,the desorption percentage could reach about 100%.The excellent Cs^(+)extraction performance should be attributed to the strong driving force produced by the potential-responsive ion-pumping effect in the ESIX process,as well as the low ion transfer resistance of the film electrode which is caused by the special crystal structure of NiHCF.In addition,the NiHCF film electrode was implemented to work together with the bismuth oxybromide(BiOBr)film electrode to accomplish the simultaneous extraction of Cs^(+)and Br^(-).And the adsorption capacity and removal percentage of Br^(-)ions on the BiOBr film electrode reached 69.53 mg·g^(-1)and 77.32%,correspondingly.It is expected that such a potential-responsive ion-pump system based on NiHCF and BiOBr film electrodes could be used for the selective extraction and concentration of Cs^(+)and Br^(-)ions from salt lake brine.
基金Project(20606008)supported by the National Natural Science Foundation of ChinaProject(11070210)supported by the Fundamental Research Funds for the Central Universities of China
文摘The residues of salt lake brine from which potassium had been removed were used to extract Rb+ and Cs+ together with a sulphonated kerosene(SK) solution of 1.0 mol/L 4-tert-butyl-2-(α-methylbenzyl) phenol(t-BAMBP). Rb+ and Cs+ were enriched and separated effectively by precipitating Mg2+ before extraction and by scrubbing out K+ and Na+ repeatedly before stripping. The effects of the volume ratio of organic phase to aqueous extraction phase(O/A), alkalinity of aqueous phase(c(OH)-), interference from K+ and Mg2+, and ratio the volume of organic phase to aqueous scrubbing phase(O/A′) were investigated. The experimental brine was extracted optimally by 5-stage extraction with 1.0 mol/L t-BAMBP in SK, c(OH-)=1 mol/L, and O/A=1:1. The scrubbing yield of rubidium was only about 10.5% when the extraction solvent was washed 3 times with 1×10-4 mol/L Na OH at O/A′=1:0.5. After 5-stage countercurrent extraction, the final extraction yields of Rb+ and Cs+ reached 95.04% and 99.80%, respectively.
文摘A new chemically modified carbon paste electrode for cesium(I) ion determination based on potassium zinc hexacyan-oferrate (PZHCF) as an ionophore was prepared. The electrode exhibits a Nernstian response for Cs(I) ions over a wide concentration range from 1 × 10-6 to 1 × 10-1 mol·L-1 with a slope of 58 ± 0.5 mV·decade-1. It has a response time of about 35 s and can be used for a period of 3 months with good reproducibility. Detection limit obtained in the optimal conditions was 3 × 10-7 mol·L-1. The potentiometric response is independent of the pH of the solution in the pH range 4.0 - 8.0. The electrode possesses the advantages of low resistance, fast response over a variety of other cations. The proposed electrode is applied as a sensor for the determination of Cs(I) ion concentration in different samples solutions. The results showed a good correlation with the data obtained by atomic absorption spectrometric method.
基金the National High Technology Research and Development Program of China(863 Program,No.2004AA518020).
文摘A liquid solid semi-moving bed with non-mechanical particle transport system is proposed and used for fractionation of cesium ion in wastewater. The particle transport system, which consists of a suction chamber, a mixing chamber, a nozzle and a riser tube, is designed to be controlled completely by hydraulic force. Experiments show that continuous feeding and discharging of resin can be realized by the transport system. The removal of cesium ion from wastewater is realized, The concentration of cesium ion in effluent liquid remains below 0,1g·L^-1 (the initial concentration is 5,3g·L^-1) during the 73 hours' experiment. The average exchange capacity of resin discharged from the bed is 0.57mmol,(g dry resin)^-1, which is close to the saturated capacity of 0.65mmol·g^-1. And it is also proved that the non-homogeneity of particle vertical velocity along the radial direction can seriously influence the ion-exchange process.
基金Supported by the National Natural Science Foundation of China (21276173)the National Science Foundation of Shanxi Province (2012011020-5, 2012011006-1)the International Joint Research Project of Shanxi Province (2011081028)
文摘Nickel hexacyanoferrate (NiHCF) film was synthesized on porous three-dimensional carbon felt (PTCF) substrate by repetitious batch chemical depositions, and the NiHCF/PTCF electrode was used as electrochemically switched ion exchange (ESIX) electrode in a packed bed for continuous separation for cesium ions. The morphologies of the prepared electrodes were characterized by scanning electron microscopy and the effects of solution concentration on the ion-exchange capacity of the electrodes were investigated by cyclic voltammetry technique. Cycling stability and long-term storage stability of NiHCF/PTCF electrodes were also studied. The NiHCF/PTCF electrodes with excellent ion-exchange ability were used to assemble a diaphragm-isolated ESIX reactor for cesium separation. Continuous separation of cesium and regeneration of NiHCF/PTCF electrode based on the diaphragm-isolated reactor were performed in a laboratory-scale two-electrode system.
文摘The exchange performances and the distribution coefficient of Cesium Ion-Sieve (Cs-IS) for cesium and for some rare earth elements were compared. In particula r, the effects of neodymium on the cesium ion exchange and the Cs+ selectivity v ariation on Cs-IS owing to introduction of rare earth elements into HLLW were s tudied. Though rare earth elements exhibit a small influence on the distributio n coefficient for Cs+, they impair Cs-exchange capacity of Cs-IS to some ext ent. This interruption on the selectivity to Cs+ can be significantly eliminat ed provided an appropriate ratio of liquid to solid V:m is used.
基金Project supported by NSF of China(10774012,10874014)NSF of Beijing Jiaotong University(2006XM038,2007XM648)Key Laboratory of Luminescence and Optical Information(Beijing Jiaotong University),Ministry of Education(2010LOI10)~~
文摘Standard Gibbs energies of transfer,△Gθt,of Tl(Ⅰ)from water to aqueous sucrose and aqueous glucose solutions(mass fractions of sucrose and glucose W=0,010,020,030,040 and 050)were determined by polarography at 298±1K.In aqueous sucrose and glucose solutions containing 50×10-2mol·L-1LiClO4,the reversible halfwave potential and the diffusion coefficients for Tl(Ⅰ)were determined,respectively.Values of △Gθt,obtained from the reversible halfwave potentials vs.the ferrocene electrode scale,are negative and these decrease with increasing concentration of sucrose and glucose,indicating increasing stability of Tl(Ⅰ)in sucrosewater and glucosewater solutions.The △Gθt values were split into electrostatic and chemical contributions.The decreased chemical contribution shows that the mixtures are more basic than pure water.The experimental results were discussed in terms of solutesolvent and solutesolute interactions in the ternary systems.