CexZr1-xO2 complex oxides doped by transition metal(Fe, Mn, Cu) were prepared by precipitation method. Thermal stability of samples was characterized by XRD, surface areas were measured by BET method and reductive pro...CexZr1-xO2 complex oxides doped by transition metal(Fe, Mn, Cu) were prepared by precipitation method. Thermal stability of samples was characterized by XRD, surface areas were measured by BET method and reductive property was characterized by TPR. The results show that MnO2 can be dispersed in solid solution after calcined at 1273 K, when the loading is 12%, while Fe and Cu is easy to separate from samples at this temperature. Samples doped simultaneously by Fe, Mn or Fe, Cu demonstrated high reactive property at low temperature. The starting reduction temperature are 413 and 373 K, respectively. TPR results also show a broad range of reductive temperature exists in these bi-metal doped samples.展开更多
Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the...Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.展开更多
The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane we...The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature, and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts. Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ展开更多
文摘CexZr1-xO2 complex oxides doped by transition metal(Fe, Mn, Cu) were prepared by precipitation method. Thermal stability of samples was characterized by XRD, surface areas were measured by BET method and reductive property was characterized by TPR. The results show that MnO2 can be dispersed in solid solution after calcined at 1273 K, when the loading is 12%, while Fe and Cu is easy to separate from samples at this temperature. Samples doped simultaneously by Fe, Mn or Fe, Cu demonstrated high reactive property at low temperature. The starting reduction temperature are 413 and 373 K, respectively. TPR results also show a broad range of reductive temperature exists in these bi-metal doped samples.
基金supported by the National Natural Science Foundations of China(51501095,51371094)the Natural Science Foundation of Inner Mongolia(2017MS(LH)0516)
文摘Nanosized Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions(x = 0.00-0.20) were synthesized by means of hydrothermal method.Then the solid solutions were ball milled with Mg2Ni and Ni powders for 20 h to get the Mg2Ni–Ni–5 mol% Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) composites.The structures and spectrum characteristics of the Ce^1-x)(Nd^0.5)Eu^0.5))xO^2-δ) solid solutions catalysts were analyzed systemically.XRD results showed that the doped samples exhibited single phase of CeO2 fluorite structure.The cell parameters and cell volumes were increased with increasing the doped content.Raman spectrum revealed that the peak position of F^2g mode shift to higher wavenumbers and the peak corresponding to oxygen vacancies were observed distinctly for the doped samples.UV-Vis technique indicated that the absorption peaks of Eu^3+ and Nd^3+ ions appeared; the bandgap energy was decreased linearly.The electrochemical and kinetic properties of the Mg2Ni–Ni–5 mol% Ce1-x(Nd0.5Eu0.5xO2-δ composites were measured.The maximum discharge capacity was increased from 722.3 mA h/g for x = 0.00 to 819.7 mA h/g for x = 0.16,and the cycle stability S20 increased from 25.0%(x = 0.00) to 42.2%(x = 0.20).The kinetic measurement proved that the catalytic activity of composite surfaces and the hydrogen diffusion rate were improved for the composites with doped catalysts,especially for the composites with x = 0.16 and x = 0.20.The catalysis mechanism was analyzed from the point of microstructure and spectrum features of the Ce1-x(Nd0.5Eu0.5)xO2-δ solid solutions.
基金This work was supported by Guangdong Natural Science Foundation of China (030514)Science and Technology Programs of Guangdong Province of China (2004B33401006)
文摘The transition metals (Cu, Co, and Fe) were applied to modify Ni/Ce0.2Zr0.1Al0.7Oδ catalyst. The effects of transition metals on the catalytic properties of Ni/Ce0.2Zr0.1Al0.7Oδ autothermal reforming of methane were investigated. The Ni-supported catalysts were characterized by XRD, TPR and XPS. Tests in autothermal reforming of methane to hydrogen showed that the addition of transition metals (Cu and Co) significantly increased the activity of catalyst under the conditions of lower reaction temperature, and Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ was found to have the highest conversion of CH4 among all catalysts in the operation temperatures ranging from 923 K to 1023 K. TPR, XRD and XPS measurements indicated that the cubic phases of CexZr1-xO2 solid solution were formed in the preparation process of catalysts. Strong interaction was found to exist between NiO and CexZr1-xO2 solid solution. The addition of Cu improved the dispersion of NiO, inhibited the formation of NiAl2O4, and thus significantly promoted the activity of the catalyst Ni/Cu0.05Ce0.2Zr0.1Al0.65Oδ