Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infilt...Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.展开更多
The SiC whiskers (SiCw) synthesized from rice hulls is studied in this paper. The properties of the application in the composite materials are tested, and also compared with the SiCw produced in US and Japan, the resu...The SiC whiskers (SiCw) synthesized from rice hulls is studied in this paper. The properties of the application in the composite materials are tested, and also compared with the SiCw produced in US and Japan, the results indicate that the SiCw produced by this method is mainly straight crystals with multi nodes on face, the main type is P-SiC. lt has many advantages such as high strength and excellent oxidation resistance to high temperature. The Si3N4 ceramic composite materials reinforced and toughened with the SiCw, δfRT of the material is (856±22)MPa, δf300℃ is approximately (418. 5±14. 2) MPa and Klc is approximately (11. 3±1. 0) MPa m1/2. Besides, the application of the SiCw in the engineering materials of mining is forecasted.展开更多
To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducte...To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption.展开更多
Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of in...Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2展开更多
A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have bee...A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have been investigated, it is found that gases and pollutants absorbed on the surface prohibit SiC particulates from uniformly dispersing in the alloy melt.展开更多
Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is ...Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is studied.Experimental results show that the vickers hardness,wear resistance and thermal conductivity of the samples increase with the increase in the SiC content,and the hardness of the sample reaches 16.22 GPa,and thermal conductivity of the sample reaches 25.41 W/(m.K)at room temperature when the SiC content is 20 wt%(B5)and the sintering temperature is at 1640℃.Higher hardness means higher scour resistance,and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation.The results indicate the mechanism of improving mechanical properties of Al_(2)O_(3)/SiC composite ceramics:SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al_(2)O_(3),while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular.展开更多
SiC whisker reinforced MoSi2 composite powder was synthesized by a novel process, referred to the literature as chemical oven self-propagating high temperature synthesis(COSHS). The as-prepared SiCw/MoSi2 composite po...SiC whisker reinforced MoSi2 composite powder was synthesized by a novel process, referred to the literature as chemical oven self-propagating high temperature synthesis(COSHS). The as-prepared SiCw/MoSi2 composite powder was rapidly sintered by spark plasma sintering(SPS) process. The sintering temperature and pressure were 1 723 K at heating rate of 100 K/min and 40 MPa, respectively. The microstructure and mechanical properties of the composite were investigated. Relative densities of the monolithic material and composite are 95% and 99.3%, respectively. SEM micrographs of SiCw/MoSi2 composite show that SiC whiskers homogeneously distribute in MoSi2 matrix. The composite containing SiC whisker has higher Vicker hardness than monolithic MoSi2. Especially the room-temperature fracture toughness of the composite is higher than that of MoSi2, from 3.6 MPa·m1/2 for MoSi2 to 7.7 MPa·m1/2 for composite with 15% SiC(volume fraction), increased by 113.9%. The morphology of propagation of crack and fractured surface of composite reveal the mechnaism to improve fracture toughness of MoSi2 matrix. The results show that the in-situ SiCw/MoSi2 composite powder prepared by COSHS technique can be successfully sinterded through SPS process and significant improvement of low temperature fracture toughness can be achieved.展开更多
Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure an...Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure and mechanical properties of the composites was investigated. It was found that the composite prepared by PP-HP exhibits a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface and the degradation of the fibers caused by a higher processing temperature. On the contrary, the composite prepared by PIP shows a tough fracture behavior, which could be rationalized on the basis of a weakly bonded fiber/matrix interface as well as a higher strength retention of the fibers. As a result, in comparison with the composite prepared by PP-HP, the composite prepared by PIP achieves better mechanical properties with a flexural strength of 573.4 MPa and a fracture toughness of 17.2 MPa.m^1/2.展开更多
基金Project(2011CB605801)supported by the National Basic Research Program of ChinaProject(2011M500127)supported by the China Postdoctoral Science Foundation+2 种基金Projects(51102089,50802115)supported by the National Natural Science Foundation of ChinaProjects(12JJ4046,12JJ9014)supported by the Natural Science Foundation of Hunan Province,ChinaProject(74341015817)supported by the Post-doctoral Fund of Central South University,China
文摘Silicon carbide/pyrolytic carbon (SiC/PyC) composite materials with excellent performance of self-lubrication and wear resistance were prepared on SiC substrates by electromagnetic-field-assisted chemical vapor infiltration (CVI). The composition and microstructure of the SiC/PyC materials were investigated in detail by XRD, SEM and EDS, etc. The effects of the deposition temperature on the section features and wear resistance of the SiC/PyC were studied. The results show that the PyC layers were deposited onto SiC substrates spontaneously at a lower deposition temperature. The SiC substrates deposited with PyC can significantly reduce the wear rate of the self-dual composite materials under dry sliding condition. The wear tests suggest that the SiC/PyC composite materials own a better wear resistance property when the deposition temperature is 800 °C, and the wear rate is about 64.6% of that without the deposition of PyC.
文摘The SiC whiskers (SiCw) synthesized from rice hulls is studied in this paper. The properties of the application in the composite materials are tested, and also compared with the SiCw produced in US and Japan, the results indicate that the SiCw produced by this method is mainly straight crystals with multi nodes on face, the main type is P-SiC. lt has many advantages such as high strength and excellent oxidation resistance to high temperature. The Si3N4 ceramic composite materials reinforced and toughened with the SiCw, δfRT of the material is (856±22)MPa, δf300℃ is approximately (418. 5±14. 2) MPa and Klc is approximately (11. 3±1. 0) MPa m1/2. Besides, the application of the SiCw in the engineering materials of mining is forecasted.
基金Funded by the National Natural Science Foundation of China(No.51271036)
文摘To investigate the ballistic performance and damage characteristics of quasi threedimensional(3D) needle-punched Cf/SiC composites prepared by chemical vapor infiltration(CVI),penetration experiments were conducted by using 7.62 mm armor piercing incendiary(API).Macro and micro fracture morphologies were then observed on recycled targets.The results show that the protection coefficient of 3D Cf/SiC composites is 2.54.High porosity and many micro thermal stress cracks may directly lead to the lower ballistic performance.Flat fracture morphology was observed on the crater surface.The low dynamic fracture strength along layer direction may be attributed to the voids and microcracks caused by residual thermal stress.The damage characteristics of Cf/Si C composites include matrix cracking,fiber bundle cracking,interfacial debonding,fiber fracture,and fiber bundle pull-out.And interfacial debonding and fiber fracture may play major roles in energy absorption.
文摘Al2024/SiC functionally graded materials (FGMs) with different numbers of graded layers and different amounts of SiC were fabricated successfully by powder metallurgy method and hot pressing process. The effects of increasing SiC content and number of layers of Al2024/SiC FGMs on the microstructure and mechanical properties of the composite were investigated. X-ray diffraction (XRD) and scanning electron microscopy (SEM) with energy-dispersive X-ray spectroscopy (EDX) analyses indicated that Al and SiC were dominant components as well as others such as Al4C3, CuAl2, and CuMgAl2
文摘A study was made of influences of vacuum-baking treatment to SiC particulates on preparing cast Al-martix composite. By means of quadripole mass analyser(QMA), gases absorbed on the surface of SiC particulate have been investigated, it is found that gases and pollutants absorbed on the surface prohibit SiC particulates from uniformly dispersing in the alloy melt.
基金Funded by the National Key Technology Research and Development Program of the Ministry of Science and Technology of China(No.2018YFB1501002)。
文摘Al_(2)O_(3)/SiC composite ceramics were prepared fromα-Al_(2)O_(3) and SiC by a pressureless sinter method in this study.The effect of SiC contents on the mechanic properties,phase compositions and microstructure is studied.Experimental results show that the vickers hardness,wear resistance and thermal conductivity of the samples increase with the increase in the SiC content,and the hardness of the sample reaches 16.22 GPa,and thermal conductivity of the sample reaches 25.41 W/(m.K)at room temperature when the SiC content is 20 wt%(B5)and the sintering temperature is at 1640℃.Higher hardness means higher scour resistance,and it indicates that the B5 material is expected to be used for the solar heat absorber of third generation solar thermal generation.The results indicate the mechanism of improving mechanical properties of Al_(2)O_(3)/SiC composite ceramics:SiC plays a role in grain refinement that the grain of SiC inhibits the grain growth of Al_(2)O_(3),while the addition of SiC changes the fracture mode from the intergranular to the intergranular-transgranular.
基金Project (50232020) supported by the National Natural Science Foundation of China
文摘SiC whisker reinforced MoSi2 composite powder was synthesized by a novel process, referred to the literature as chemical oven self-propagating high temperature synthesis(COSHS). The as-prepared SiCw/MoSi2 composite powder was rapidly sintered by spark plasma sintering(SPS) process. The sintering temperature and pressure were 1 723 K at heating rate of 100 K/min and 40 MPa, respectively. The microstructure and mechanical properties of the composite were investigated. Relative densities of the monolithic material and composite are 95% and 99.3%, respectively. SEM micrographs of SiCw/MoSi2 composite show that SiC whiskers homogeneously distribute in MoSi2 matrix. The composite containing SiC whisker has higher Vicker hardness than monolithic MoSi2. Especially the room-temperature fracture toughness of the composite is higher than that of MoSi2, from 3.6 MPa·m1/2 for MoSi2 to 7.7 MPa·m1/2 for composite with 15% SiC(volume fraction), increased by 113.9%. The morphology of propagation of crack and fractured surface of composite reveal the mechnaism to improve fracture toughness of MoSi2 matrix. The results show that the in-situ SiCw/MoSi2 composite powder prepared by COSHS technique can be successfully sinterded through SPS process and significant improvement of low temperature fracture toughness can be achieved.
基金This research was financially supported by the National Natural Science Foundation of China (No. 50404012)
文摘Carbon fiber-reinforced SiC composites were prepared by precursor pyrolysis-hot pressing (PP-HP) and precursor impregnation-pyrolysis (PIP), respectively. The effect of fabrication methods on the microstructure and mechanical properties of the composites was investigated. It was found that the composite prepared by PP-HP exhibits a brittle fracture behavior, which is mainly ascribed to a strongly bonded fiber/matrix interface and the degradation of the fibers caused by a higher processing temperature. On the contrary, the composite prepared by PIP shows a tough fracture behavior, which could be rationalized on the basis of a weakly bonded fiber/matrix interface as well as a higher strength retention of the fibers. As a result, in comparison with the composite prepared by PP-HP, the composite prepared by PIP achieves better mechanical properties with a flexural strength of 573.4 MPa and a fracture toughness of 17.2 MPa.m^1/2.