In this paper, we study an innovative multiple access scheme that exploits the intrinsic properties of the wireless envi- ronment to improve the multiuser environment, so-called Channel Division Multiple Access (ChDMA...In this paper, we study an innovative multiple access scheme that exploits the intrinsic properties of the wireless envi- ronment to improve the multiuser environment, so-called Channel Division Multiple Access (ChDMA) focusing on spectral efficiency analysis and system performance. In particular, we show that Simultaneous multiuser accessing to a common destination is made possible by considering the channel impulse response (CIR) of each user as a signature. We begin by the assumption of the channel state information available at the receiver. Then, we analyze the perform- ance of the ChDMA integration in a random environment over UWB high data rate channel. Next, we discuss the de- sign of MMSE and optimal receiver structure for such a system. Additionally, we show an asymptotic analysis behavior taking into account the channel eigenvalues distribution with the associated spectral efficiency.展开更多
文摘In this paper, we study an innovative multiple access scheme that exploits the intrinsic properties of the wireless envi- ronment to improve the multiuser environment, so-called Channel Division Multiple Access (ChDMA) focusing on spectral efficiency analysis and system performance. In particular, we show that Simultaneous multiuser accessing to a common destination is made possible by considering the channel impulse response (CIR) of each user as a signature. We begin by the assumption of the channel state information available at the receiver. Then, we analyze the perform- ance of the ChDMA integration in a random environment over UWB high data rate channel. Next, we discuss the de- sign of MMSE and optimal receiver structure for such a system. Additionally, we show an asymptotic analysis behavior taking into account the channel eigenvalues distribution with the associated spectral efficiency.