期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Chafee-Infante方程的孤子解
1
作者 王庆 《辽宁师范大学学报(自然科学版)》 CAS 2011年第4期432-435,共4页
Chafee-Infante方程是一类解决反应扩散问题的重要方程在物理学、化学、生物学、经济学及各种工程问题中有广泛的应用.运用齐次平衡法讨论此方程的孤子解.首先由相容性的条件ωxt=ωtx,求出其特征方程为:2r3+3b(2λ)21r2+(3λb2-λ)r=0... Chafee-Infante方程是一类解决反应扩散问题的重要方程在物理学、化学、生物学、经济学及各种工程问题中有广泛的应用.运用齐次平衡法讨论此方程的孤子解.首先由相容性的条件ωxt=ωtx,求出其特征方程为:2r3+3b(2λ)21r2+(3λb2-λ)r=0,然后依据参数b=0,λ>0及b=1,λ>0的不同情况来讨论其两种情形下解的结构,进而给出它的孤子解. 展开更多
关键词 chafee-infante方程 孤子解 齐次平衡法
下载PDF
ASYMPTOTIC BEHAVIOR OF SOLUTIONS FOR THE CHAFEE-INFANTE EQUATION
2
作者 Haochuan HUANG Rui HUANG 《Acta Mathematica Scientia》 SCIE CSCD 2020年第2期425-441,共17页
In higher dimension,there are many interesting and challenging problems about the dynamics of non-autonomous Chafee-Infante equation.This article is concerned with the asymptotic behavior of solutions for the non-auto... In higher dimension,there are many interesting and challenging problems about the dynamics of non-autonomous Chafee-Infante equation.This article is concerned with the asymptotic behavior of solutions for the non-autonomous Chafee-Infante equation∂u∂t−Δu=λ(t)(u−u3)in higher dimension,whereλ(t)∈C1[0,T]andλ(t)is a positive,periodic function.We denoteλ1 as the first eigenvalue of−Δφ=λφ,x∈Ω;φ=0,x∈∂Ω.For any spatial dimension N≥1,we prove that ifλ(t)≤λ1,then the nontrivial solutions converge to zero,namely,limt→+∞u(x,t)=0,x∈Ω;ifλ(t)>λ1 as t→+∞,then the positive solutions are"attracted"by positive periodic solutions.Specially,ifλ(t)is independent of t,then the positive solutions converge to positive solutions of−ΔU=λ(U−U^3).Furthermore,numerical simulations are presented to verify our results. 展开更多
关键词 chafee-infante equation asymptotic behavior periodic solutions
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部