Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning hig...Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning high-aspect-ratio microstructures on the surface of chalcogenide glasses offers an efficient and robust method to manipulate longwave infrared radiations.Despite chalcogenide glass being considered soft in terms of its mechanical properties,we successfully fabricate high-aspect-ratio micropillars with a height of 8μm using optimized deep etching process,and we demonstrate a 2-mm-diameter all-chalcogenide metalens with a numerical aperture of 0.45 on the surface of a 1.5-mm-thick As2Se3 glass.Leveraging the exceptional longwave infrared(LWIR)transparency and moderate refractive index of As2Se3 glass,the all-chalcogenide metalens produces a focal spot size of~1.39λ0 with a focusing efficiency of 47%at the wavelength of 9.78μm,while also exhibiting high-resolution imaging capabilities.Our work provides a promising route to realize easy-to-fabricate,mass-producible planar infrared optics for compact,light-weight LWIR imaging systems.展开更多
We have prepared three groups of Ge–As–Se glasses in which the Se content is 5.5 mol%, 10 mol%, and 20 mol%rich, respectively. We explored the possibility of suppressing the formation of the Ge–Ge and As–As homopo...We have prepared three groups of Ge–As–Se glasses in which the Se content is 5.5 mol%, 10 mol%, and 20 mol%rich, respectively. We explored the possibility of suppressing the formation of the Ge–Ge and As–As homopolar bonds in the glasses. Thermal kinetics analysis indicated that the 5.5 mol% Se-rich Ge_(11.5)As_(24)Se_(64.5) glass exhibits the minimum fragility and thus is most stable against structural relaxation. Analysis of the Raman spectra of the glasses indicated that the Ge–Ge and As–As homopolar bonds could be almost completely suppressed in 20 mol% Se-rich Ge_(15)As_(14)Se_(71) glass.展开更多
The principle of variable angle spectroscopic ellipsometry(VASE) and the data analysis models, as well as the applications of VASE in the characterization of chalcogenide bulk glasses and thin films are reviewed. By...The principle of variable angle spectroscopic ellipsometry(VASE) and the data analysis models, as well as the applications of VASE in the characterization of chalcogenide bulk glasses and thin films are reviewed. By going through the literature and summarizing the application scopes of various analysis models, it is found that a combination of various models, rather than any single data analysis model, is ideal to characterize the optical constants of the chalcogenide bulk glasses and thin films over a wider wavelength range. While the reliable optical data in the mid-and far-infrared region are limited, the VASE is flexible and reliable to solve the issues, making it promising to characterize the optical properties of chalcogenide glasses.展开更多
Chalcogenide glasses (ChGs) are a promising candidate for applications in nonlinear photonic devices. In this paper, we review the research progress of the third-order optical nonlinearity (TONL) of ChGs from the ...Chalcogenide glasses (ChGs) are a promising candidate for applications in nonlinear photonic devices. In this paper, we review the research progress of the third-order optical nonlinearity (TONL) of ChGs from the following three aspects: chemical composition, excitation condition, and post processing. The deficiencies in previous studies and further research of the TONL property of ChGs are also discussed.展开更多
In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected ...In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected by small amount of additives. It has been found that some chalcogenide glasses could be converted into glass-ceramics without phase separation. The different mechanisms of nucleated crystallization of chalcogenide glasses are discussed and propossed.展开更多
Chalcogenide glasses have shown promise in fabricating mid infrared(MIR) photonic sensing devices due to their excellent optical properties in MIR. In addition, the glass transition temperature of chalcogenide glass...Chalcogenide glasses have shown promise in fabricating mid infrared(MIR) photonic sensing devices due to their excellent optical properties in MIR. In addition, the glass transition temperature of chalcogenide glasses are generally low,making them ideal to create the high-throughput patterns of micro-scale structures based on hot embossing that is alternative to the standard lithographic technology. In this paper, we outline the research progress in the chalcogenide waveguide based on the hot embossing method, and discuss the problems remaining to be solved and the possible solutions.展开更多
Anomalous structural characteristics of the so-called first sharp diffraction peak (FSDP) that arises in the total static structure functions of network-forming glasses and liquids at around 1-2 A<sup>-1<...Anomalous structural characteristics of the so-called first sharp diffraction peak (FSDP) that arises in the total static structure functions of network-forming glasses and liquids at around 1-2 A<sup>-1</sup> have been reviewed and discussed in details. Unlike other peaks in the static structure functions, the FSDP has anomalous dependencies on temperature, pressure and composition. Despite the fact that the FSDP is considered as a signature of intermediate range order (IRO) in network-forming glasses and liquids, its structural origin remains unclear and till now, it forms a subject of debate. A brief account for some anomalous characteristics of the FSDP followed by the different controversial interpretations about its structural origin has been reviewed and discussed. Some of the interpretations that seem to be inconsistent with recent experimental results have been ruled out. The most likely structural origins for the occurrence of the FSDP have been highlighted and discussed in details.展开更多
A 488 nm continuous wave (CW) laser was employed in Raman spectrometer to both induce and characterize phase transformation in chalcogenide glasses. Laser-induced Raman inactive changes, structural evolution, and cr...A 488 nm continuous wave (CW) laser was employed in Raman spectrometer to both induce and characterize phase transformation in chalcogenide glasses. Laser-induced Raman inactive changes, structural evolution, and crystallization were observed at laser-irradiated region in GeS2-Sb2S3 glasses. The composition dependence of laser-induced phase transformation was discussed in terms of thermal stability and microstructural modification. It is strongly suggested from these results that fabrication of passive and active chalcogenide glass waveguides, such as refractive index change and nonlinear optical crystal line, is controllable by selecting appropriate glass composition, and convenient by using common CW lasers.展开更多
Bismuth (Bi)-doped materials have attracted a great deal of attention because of their broadband near- infrared (near-IR) emission around the wavelength utilized in telecommunications. In this study, broad near-IR...Bismuth (Bi)-doped materials have attracted a great deal of attention because of their broadband near- infrared (near-IR) emission around the wavelength utilized in telecommunications. In this study, broad near-IR emission band from 1100 to 1650 nm is generated in the Bi-doped 90GeS2-10Ga2S3 glass and glass-ceramics under 820 nm of light excitation. Based on the analysis of the absorption and emission spectra, the origin of this broadband emission is ascribed to the Bi22- dimers. The precipitation of β-GeS2 nanocrystals drastically enhances the emission intensity and lifetime of Bi-doped chalcogenide glass,展开更多
Dy^3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm dio...Dy^3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 nm, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy^3+ ions. The longest lifetime was over 2.5 ms, and the value was significantly higher than that in other Dy^3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy^3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.展开更多
The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the m...The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.展开更多
Dynamically tunable metasurfaces employing chalcogenide phase-change materials(PCMs)such as Ge_(2)Sb_(2)Te_(5)alloys have garnered significant attention and research efforts.However,the utilization of chalcogenide PCM...Dynamically tunable metasurfaces employing chalcogenide phase-change materials(PCMs)such as Ge_(2)Sb_(2)Te_(5)alloys have garnered significant attention and research efforts.However,the utilization of chalcogenide PCMs in dynamic metasurface devices necessitates protection,owing to their susceptibility to volatilization and oxidation.Conventional protective layer materials such as Al_(2)O_(3),TiO_(2),and SiO_(2)present potential drawbacks including diffusion,oxidation,or thermal expansion coefficient mismatch with chalcogenide PCMs during high-temperature phase transition,severely limiting the durability of chalcogenide PCM-based devices.In this paper,we propose,for the first time to our knowledge,the utilization of chalcogenide glass characterized by high thermal stability as a protective material for chalcogenide PCM.This approach addresses the durability challenge of current dynamic photonic devices based on chalcogenide PCM by virtue of their closely matched optical and thermal properties.Building upon this innovation,we introduce an all-chalcogenide dynamic tunable metasurface filter and comprehensively simulate and analyze its characteristics.This pioneering work paves the way for the design and practical implementation of optically dynamically tunable metasurface devices leveraging chalcogenide PCMs,ushering in new opportunities in the field.展开更多
GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by...GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by UV-1601 speetrophotometer and optical second-order nonlinear tester. The results show that the transmittance of the samples around 532 nm obviously decreases and Bragg reflector forms, which is due to the production of photon-generated carriers. With the increase of laser pulse energy or the extension of irradiation duration, the Bragg reflector increases and gradually tends to be stable. These can be ascribed to the excitation- capture process of the carriers. After irradiation, the relaxation phenomenon results from the release of part of the absorbed energy in the glass matrix. And the fitting equation of the relaxation process is consistent with a conventional Kohlrausch stretched exponential function. The origin of the second harmonic generation (SHG) is because of the dipole reorientation caused by the photo-induced anisotropy in the glass.展开更多
The mid-infrared (MIR) luminescent properties of Dy3+ ions in a new chalcohalide glass host, Ga2S3-Sb2S3-CsI, are investigated; and the suitability of the doped glass for MIR fiber lasers is evaluated. The Dy3+-do...The mid-infrared (MIR) luminescent properties of Dy3+ ions in a new chalcohalide glass host, Ga2S3-Sb2S3-CsI, are investigated; and the suitability of the doped glass for MIR fiber lasers is evaluated. The Dy3+-doped chalcohalide glasses exhibit good thermal stability and intense MIR emissions around 2.96 μm and 4.41 μm. These emissions show quantum efficiencies (η) as high as ~ 60%, and have relatively large stimulated emission cross sections (σem). The low phonon energy (~ 307 cm-1) of the host glass accounts for the intense MIR emissions, as well as the high η. These favorable thermal and emission properties make the Dy3+-doped Ga2S3-Sb2S3-CsI glasses promising materials for MIR fiber amplifiers or lasers.展开更多
Several thin films of Te10Ge10Se77Sb3 chalcogenide glass of different thicknesses (250 nm to 400 nm) were prepared by thermalevaporation under vacuum of 133×10-6 Pa (10-6torr). X- ray diffraction analysis showed ...Several thin films of Te10Ge10Se77Sb3 chalcogenide glass of different thicknesses (250 nm to 400 nm) were prepared by thermalevaporation under vacuum of 133×10-6 Pa (10-6torr). X- ray diffraction analysis showed the amorphicity of the preparedfilms which become partially crystalline by annealing. Transmittance and reflectance measurements in the spectral range of200 nm to 2500 nm have been carried out at normal incidence. The analysis of the absorption coefficient data showed theexistence of indirect transition for the photon energy E in the range 1~3 eV and direct transition for E >3 eV. From thedetermination of the optical constants (n, k), the dispersion of the refractive index has anomalous behaviour in the region ofthe fundamental absorption edge, and followed by the single- effective oscillator approach.The investigated optical parameterssuch as the optical energy gap Eopt, the high frequency dielectric constant εoo, the oscillator position λo, and the oscillatorstrength So, were significantly affected by the film thickness. The characteristic energy gap obtained from the conductivitymeasurements is nearly half the value of that obtained from the optical data as in the case of thickness 400 nm. The activationenergy is 0.65 eV and the indirect optical gap is 1.32 eV.展开更多
The samples of the GeS2-Ga2 S3-CdS pseudo-ternary glassy sysem were prepared by comventional melt-quenching techniques.The microstructure of the GeS2-Ca2 S3-CdS glasses was analyzed thoroughly using Raman spectra and ...The samples of the GeS2-Ga2 S3-CdS pseudo-ternary glassy sysem were prepared by comventional melt-quenching techniques.The microstructure of the GeS2-Ca2 S3-CdS glasses was analyzed thoroughly using Raman spectra and the relationships among the composition,microstructure and properties(such as thermal properties,densities,optical properties)were probed.The experimental results indicate that the GeS2 acts as the network former,the Ga2S3 as the net intermediate,and the CdS as the net modifier,The GeS2 and Ga2S3 exist in the form of [GeS4/2],[GaS4/2]tetrahedra or S3G3(Ga)-(Ga)GeS3 ethane-like units within the glassy network,and the addition of CdS mainly breaks the Ge(Ga)-(Ga)Ge bonds among the ethane -like units,leading to the formation of [GeS4/2].[GaS4/2]tetrahedra.The Tg and Tx have tight relations on the congregated degree of glassy network,however,λvis,n and d are hardly involved into the connectional dependence of the space arrangement.展开更多
The structures of pseudo-binary GeS2-Sb2S3, GeS2-CdS, Sb2S3-CdS, and pseudo-ternary GeS2-Sb2S3-CdS chalco- genide systems are systematically investigated by Raman spectroscopy. It is shown that a small number of [S3Ge...The structures of pseudo-binary GeS2-Sb2S3, GeS2-CdS, Sb2S3-CdS, and pseudo-ternary GeS2-Sb2S3-CdS chalco- genide systems are systematically investigated by Raman spectroscopy. It is shown that a small number of [S3Ge-GeS3] structural units (SUs) and -S-S-/S8 groups exist simultaneously in GeS2 glass which has a three-dimensional continuous network backbone consisting of cross-linked corner-sharing and edge-sharing [GeS4] tetrahedra. When Sb2S3 is added into GeS2 glass, the network backbone becomes interconnected [GeS4] tetrahedra and [SbS3] pyramids. Moreover, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from Sb2S3, leading to the formation of [S2Sb-SbS2] SUs. When CdS is added into GeS2 glass, [Cd4GeS6] polyhedra are formed, resulting in a strong crystallization tendency. In addition, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from CdS, resulting in the dissolution of Ge-Ge bond. Co-melting of Sb2S3 or CdS with GeS2 reduces the viscosity of the melt and improves the homogeneity of the glass. The GeS2 glass can only dissolve up to 10-mol% CdS without crystallization. In comparison, GeS2-SbzS3 glasses can dissolve up to 20-mo1% CdS, implying that Sb2S3 could delay the construction of [Cd4GeS6] polyhedron and increase the dissolving amount of CdS in the glass.展开更多
Novel chalcogenide glasses of pseudo-binary(100-x)Sb_(2)S_(3-x)CuI systems were synthesized by traditional meltquenching method.The glass-forming region of Sb_(2)S_(3)-CuI system was determined ranging from x=30 mol% ...Novel chalcogenide glasses of pseudo-binary(100-x)Sb_(2)S_(3-x)CuI systems were synthesized by traditional meltquenching method.The glass-forming region of Sb_(2)S_(3)-CuI system was determined ranging from x=30 mol% to 40 mol%.CuI acts as a non-bridging modifier to form appropriate amount of [SbSI] structural units for improving the glass-forming ability of Sb_(2)S_(3).Particularly,as-prepared glassy sample is able to transmit light beyond 14 μm,which is the wider transparency region than most sulfide glasses.Their physical properties,including Vickers hardness(Hv),density(ρ),and ionic conductivity(σ) were characterized and analyzed with the compositional-dependent Raman spectra.These experimental results would provide useful knowledge for the development of novel multi-spectral optical materials and glassy electrolytes.展开更多
Based on the designed As2Se3 and As2S3 chalcogenide glass photonic crystal fiber(PCF) and the scalar nonlinear Schrdinger equation,the effects of pump power and wavelength on modulation instability(MI) gain are co...Based on the designed As2Se3 and As2S3 chalcogenide glass photonic crystal fiber(PCF) and the scalar nonlinear Schrdinger equation,the effects of pump power and wavelength on modulation instability(MI) gain are comprehensively studied in the abnormal dispersion regime of chalcogenide glass PCF.Owing to high Raman effect and high nonlinearity,ultra-broadband MI gain is obtained in chalcogenide glass PCF.By choosing the appropriate pump parameter,the MI gain bandwidth reaches 2738 nm for the As2Se3 glass PCF in the abnormal-dispersion region,while it is 1961 nm for the As2S3 glass PCF.展开更多
Decreasing the absorption is a key process for chalcogenide glass preparation. The glass character of oxygen absorption and some means to remove the oxygen absorption were introduced.
基金supported by National Natural Science Foundation of China(Grant No.62105172)Natural Science Foundation of Zhejiang Province(Grant No.LDT23F05015F05,LDT23F05011F05).
文摘Multidimensional-engineering chalcogenide glasses is widely explored to construct various infrared photonic devices,with their surface as a key dimension for wavefront control.Here,we demonstrate direct patterning high-aspect-ratio microstructures on the surface of chalcogenide glasses offers an efficient and robust method to manipulate longwave infrared radiations.Despite chalcogenide glass being considered soft in terms of its mechanical properties,we successfully fabricate high-aspect-ratio micropillars with a height of 8μm using optimized deep etching process,and we demonstrate a 2-mm-diameter all-chalcogenide metalens with a numerical aperture of 0.45 on the surface of a 1.5-mm-thick As2Se3 glass.Leveraging the exceptional longwave infrared(LWIR)transparency and moderate refractive index of As2Se3 glass,the all-chalcogenide metalens produces a focal spot size of~1.39λ0 with a focusing efficiency of 47%at the wavelength of 9.78μm,while also exhibiting high-resolution imaging capabilities.Our work provides a promising route to realize easy-to-fabricate,mass-producible planar infrared optics for compact,light-weight LWIR imaging systems.
基金Project supported by the Australian Research Council(ARC)Centre of Excellence for Ultrahigh Bandwidth Device for Optical System(Project CE110001018)Australian Research Council Discovery Programs(Project DP110102753)the Importation and Development of High-Caliber Talents Project of Beijing Municipal Institutions,China
文摘We have prepared three groups of Ge–As–Se glasses in which the Se content is 5.5 mol%, 10 mol%, and 20 mol%rich, respectively. We explored the possibility of suppressing the formation of the Ge–Ge and As–As homopolar bonds in the glasses. Thermal kinetics analysis indicated that the 5.5 mol% Se-rich Ge_(11.5)As_(24)Se_(64.5) glass exhibits the minimum fragility and thus is most stable against structural relaxation. Analysis of the Raman spectra of the glasses indicated that the Ge–Ge and As–As homopolar bonds could be almost completely suppressed in 20 mol% Se-rich Ge_(15)As_(14)Se_(71) glass.
基金supported by the National Natural Science Foundation of China(Grant Nos.61775111 and 61775109)the International Cooperation Project of Ningbo City,China(Grant No.2017D10009)+1 种基金the Scientific Research Foundation of Graduate School of Ningbo University,China,the K C Wong Magna Fund in Ningbo University,China
文摘The principle of variable angle spectroscopic ellipsometry(VASE) and the data analysis models, as well as the applications of VASE in the characterization of chalcogenide bulk glasses and thin films are reviewed. By going through the literature and summarizing the application scopes of various analysis models, it is found that a combination of various models, rather than any single data analysis model, is ideal to characterize the optical constants of the chalcogenide bulk glasses and thin films over a wider wavelength range. While the reliable optical data in the mid-and far-infrared region are limited, the VASE is flexible and reliable to solve the issues, making it promising to characterize the optical properties of chalcogenide glasses.
基金Project supported by the National Natural Science Foundation of China(Grant No.61675106)the National Key Research and Development Program of China(Grant No.2016YFB0303803)the K C Wong Magna Fund in Ningbo University
文摘Chalcogenide glasses (ChGs) are a promising candidate for applications in nonlinear photonic devices. In this paper, we review the research progress of the third-order optical nonlinearity (TONL) of ChGs from the following three aspects: chemical composition, excitation condition, and post processing. The deficiencies in previous studies and further research of the TONL property of ChGs are also discussed.
文摘In this paper the experimental results associated until the phase separation and nucleation and crystallization of chalcogenidc glasses are described. Experi-ments demonstrate that the phas separation may be affected by small amount of additives. It has been found that some chalcogenide glasses could be converted into glass-ceramics without phase separation. The different mechanisms of nucleated crystallization of chalcogenide glasses are discussed and propossed.
基金Project supported by the National Natural Science Foundation of China(Grant No.61377061)the Public Project of Zhejiang Province,China(Grant No.2014C31146)sponsored by K.C.Wong Magna Fund in Ningbo University,China
文摘Chalcogenide glasses have shown promise in fabricating mid infrared(MIR) photonic sensing devices due to their excellent optical properties in MIR. In addition, the glass transition temperature of chalcogenide glasses are generally low,making them ideal to create the high-throughput patterns of micro-scale structures based on hot embossing that is alternative to the standard lithographic technology. In this paper, we outline the research progress in the chalcogenide waveguide based on the hot embossing method, and discuss the problems remaining to be solved and the possible solutions.
文摘Anomalous structural characteristics of the so-called first sharp diffraction peak (FSDP) that arises in the total static structure functions of network-forming glasses and liquids at around 1-2 A<sup>-1</sup> have been reviewed and discussed in details. Unlike other peaks in the static structure functions, the FSDP has anomalous dependencies on temperature, pressure and composition. Despite the fact that the FSDP is considered as a signature of intermediate range order (IRO) in network-forming glasses and liquids, its structural origin remains unclear and till now, it forms a subject of debate. A brief account for some anomalous characteristics of the FSDP followed by the different controversial interpretations about its structural origin has been reviewed and discussed. Some of the interpretations that seem to be inconsistent with recent experimental results have been ruled out. The most likely structural origins for the occurrence of the FSDP have been highlighted and discussed in details.
基金Funded in part by the the International Science&Technology Cooperation Program of China(No.2011DFA12040)State Key Laboratory of Silicate Materials for Architectures(Wuhan University of Technology)(No.SYSJJ2013-03)sponsored by K.C.Wong Magna Fund in Ningbo University
文摘A 488 nm continuous wave (CW) laser was employed in Raman spectrometer to both induce and characterize phase transformation in chalcogenide glasses. Laser-induced Raman inactive changes, structural evolution, and crystallization were observed at laser-irradiated region in GeS2-Sb2S3 glasses. The composition dependence of laser-induced phase transformation was discussed in terms of thermal stability and microstructural modification. It is strongly suggested from these results that fabrication of passive and active chalcogenide glass waveguides, such as refractive index change and nonlinear optical crystal line, is controllable by selecting appropriate glass composition, and convenient by using common CW lasers.
基金supported by the National Natural Science Foundation of China(No.61205181)Zhejiang Provincial Natural Science Foundation of China(No.LQ12E02003)+2 种基金the Natural Science Foundation of Ningbo City(No.2012A610122)the Scientific Research Fund of Zhejiang Provincial Education Department(No.Y201120457)K.C.Wong Magna Fund in Ningbo University
文摘Bismuth (Bi)-doped materials have attracted a great deal of attention because of their broadband near- infrared (near-IR) emission around the wavelength utilized in telecommunications. In this study, broad near-IR emission band from 1100 to 1650 nm is generated in the Bi-doped 90GeS2-10Ga2S3 glass and glass-ceramics under 820 nm of light excitation. Based on the analysis of the absorption and emission spectra, the origin of this broadband emission is ascribed to the Bi22- dimers. The precipitation of β-GeS2 nanocrystals drastically enhances the emission intensity and lifetime of Bi-doped chalcogenide glass,
基金supported by the China’s Manned Space Program (921-21 Project)
文摘Dy^3+-doped Ge-Ga-Se chalcogenide glasses and GeSe2-Ga2Se3-CsI chalcohalide glasses were prepared. The absorption, emission properties, and local structure of the glasses were investigated. When excited at 808 nm diode laser, intense 1.32 and 1.55 μm near-infrared luminescence were observed with full width at half maximum (FWHM) of about 90 and 50 nm, respectively. The lifetime of the 1.32 μm emission varied due to changes in the local structure surrounding Dy^3+ ions. The longest lifetime was over 2.5 ms, and the value was significantly higher than that in other Dy^3+-doped glasses. Some other spectroscopic parameters were calculated by using Judd-Ofelt theory. Meanwhile, Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses showed good infrared transmittance. As a result, Dy^3+-doped Ge-Ga-Se and GeSe2-Ga2Se3-CsI glasses were believed to be useful hosts for 1.3 μm optical fiber amplifier.
基金supported by the National Natural Science Foundation of China(Grant Nos.62105272 and 62305304)the Natural Science Foundation of Fujian Province,China(Grant Nos.2022J06016 and 2021J05016)+2 种基金the National Key Research and Development Program of China(Grant No.2021ZD0109904)the Key Research Project of Zhejiang Laboratory(Grant No.2022PH0AC03)the Fundamental Research Funds for the Central Universities(Grant No.20720220109).
文摘The increasing demand in spectroscopy and sensing calls for infrared(mid-IR)light sources.Here,we theoretically investigate nonlinear wavelength conversion of Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguide in the mid-IR spectral regime.With waveguide dispersion engineering,we predict generation of over an octave wavelength(2.8μm-5.9μm)tuning range Raman soliton self-frequency shift,over 2.5 octaves wavelength cover range supercontinuum(1.2μm-8.0μm),as well as single soliton Kerr comb generated in suspended Ge_(28)Sb_(12)Se_(60)waveguide.Our findings evidenced that Ge_(28)Sb_(12)Se_(60)chalcogenide glass waveguides can simultaneously satisfy the generation of Raman soliton self-frequency shift,supercontinuum spectrum,and Kerr frequency comb generation through dispersion engineering towards mid-IR on chip.
基金supported by the Program of Marine Economy Development Special Fund under Department of Natural Resources of Guangdong Province(Grant No.GDNRC[2023]23)the National Natural Science Foundation of China(Grant Nos.62005098 and 61935013)+1 种基金the General Items of Guangzhou Science and Technology Plan Project(PhD Young Scientists and Technologists category)(Grant No.202201010320)the Fundamental Research Funds for the Central University(Grant No.11623415).
文摘Dynamically tunable metasurfaces employing chalcogenide phase-change materials(PCMs)such as Ge_(2)Sb_(2)Te_(5)alloys have garnered significant attention and research efforts.However,the utilization of chalcogenide PCMs in dynamic metasurface devices necessitates protection,owing to their susceptibility to volatilization and oxidation.Conventional protective layer materials such as Al_(2)O_(3),TiO_(2),and SiO_(2)present potential drawbacks including diffusion,oxidation,or thermal expansion coefficient mismatch with chalcogenide PCMs during high-temperature phase transition,severely limiting the durability of chalcogenide PCM-based devices.In this paper,we propose,for the first time to our knowledge,the utilization of chalcogenide glass characterized by high thermal stability as a protective material for chalcogenide PCM.This approach addresses the durability challenge of current dynamic photonic devices based on chalcogenide PCM by virtue of their closely matched optical and thermal properties.Building upon this innovation,we introduce an all-chalcogenide dynamic tunable metasurface filter and comprehensively simulate and analyze its characteristics.This pioneering work paves the way for the design and practical implementation of optically dynamically tunable metasurface devices leveraging chalcogenide PCMs,ushering in new opportunities in the field.
基金Supported by the Natural Science Foundation of Hubei Province(No.2013CFA008)NCET(No.11-0687)
文摘GeS4 bulk glasses were prepared by the melt-quench technique and the samples were irradiated by 532-nm linearly polarized light. After the laser treatment, the photo-induced changes of the samples were investigated by UV-1601 speetrophotometer and optical second-order nonlinear tester. The results show that the transmittance of the samples around 532 nm obviously decreases and Bragg reflector forms, which is due to the production of photon-generated carriers. With the increase of laser pulse energy or the extension of irradiation duration, the Bragg reflector increases and gradually tends to be stable. These can be ascribed to the excitation- capture process of the carriers. After irradiation, the relaxation phenomenon results from the release of part of the absorbed energy in the glass matrix. And the fitting equation of the relaxation process is consistent with a conventional Kohlrausch stretched exponential function. The origin of the second harmonic generation (SHG) is because of the dipole reorientation caused by the photo-induced anisotropy in the glass.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61405080 and 61575086)Jiangsu Collaborative Innovation Centre of Advanced Laser Technology and Emerging Industry,Chinathe Priority Academic Program Development of Jiangsu Higher Education Institutions,China
文摘The mid-infrared (MIR) luminescent properties of Dy3+ ions in a new chalcohalide glass host, Ga2S3-Sb2S3-CsI, are investigated; and the suitability of the doped glass for MIR fiber lasers is evaluated. The Dy3+-doped chalcohalide glasses exhibit good thermal stability and intense MIR emissions around 2.96 μm and 4.41 μm. These emissions show quantum efficiencies (η) as high as ~ 60%, and have relatively large stimulated emission cross sections (σem). The low phonon energy (~ 307 cm-1) of the host glass accounts for the intense MIR emissions, as well as the high η. These favorable thermal and emission properties make the Dy3+-doped Ga2S3-Sb2S3-CsI glasses promising materials for MIR fiber amplifiers or lasers.
文摘Several thin films of Te10Ge10Se77Sb3 chalcogenide glass of different thicknesses (250 nm to 400 nm) were prepared by thermalevaporation under vacuum of 133×10-6 Pa (10-6torr). X- ray diffraction analysis showed the amorphicity of the preparedfilms which become partially crystalline by annealing. Transmittance and reflectance measurements in the spectral range of200 nm to 2500 nm have been carried out at normal incidence. The analysis of the absorption coefficient data showed theexistence of indirect transition for the photon energy E in the range 1~3 eV and direct transition for E >3 eV. From thedetermination of the optical constants (n, k), the dispersion of the refractive index has anomalous behaviour in the region ofthe fundamental absorption edge, and followed by the single- effective oscillator approach.The investigated optical parameterssuch as the optical energy gap Eopt, the high frequency dielectric constant εoo, the oscillator position λo, and the oscillatorstrength So, were significantly affected by the film thickness. The characteristic energy gap obtained from the conductivitymeasurements is nearly half the value of that obtained from the optical data as in the case of thickness 400 nm. The activationenergy is 0.65 eV and the indirect optical gap is 1.32 eV.
文摘The samples of the GeS2-Ga2 S3-CdS pseudo-ternary glassy sysem were prepared by comventional melt-quenching techniques.The microstructure of the GeS2-Ca2 S3-CdS glasses was analyzed thoroughly using Raman spectra and the relationships among the composition,microstructure and properties(such as thermal properties,densities,optical properties)were probed.The experimental results indicate that the GeS2 acts as the network former,the Ga2S3 as the net intermediate,and the CdS as the net modifier,The GeS2 and Ga2S3 exist in the form of [GeS4/2],[GaS4/2]tetrahedra or S3G3(Ga)-(Ga)GeS3 ethane-like units within the glassy network,and the addition of CdS mainly breaks the Ge(Ga)-(Ga)Ge bonds among the ethane -like units,leading to the formation of [GeS4/2].[GaS4/2]tetrahedra.The Tg and Tx have tight relations on the congregated degree of glassy network,however,λvis,n and d are hardly involved into the connectional dependence of the space arrangement.
基金supported by the National Natural Science Foundation of China(Grant Nos.61475189,61405240,and 61575086)the Natural Science Basic Research Project in Shaanxi Province,China(Grant No.2015JQ5141)the Jiangsu Key Laboratory of Advanced Laser Materials and Devices,Jiangsu Normal University,China(Grant No.KLALMD-2015-08)
文摘The structures of pseudo-binary GeS2-Sb2S3, GeS2-CdS, Sb2S3-CdS, and pseudo-ternary GeS2-Sb2S3-CdS chalco- genide systems are systematically investigated by Raman spectroscopy. It is shown that a small number of [S3Ge-GeS3] structural units (SUs) and -S-S-/S8 groups exist simultaneously in GeS2 glass which has a three-dimensional continuous network backbone consisting of cross-linked corner-sharing and edge-sharing [GeS4] tetrahedra. When Sb2S3 is added into GeS2 glass, the network backbone becomes interconnected [GeS4] tetrahedra and [SbS3] pyramids. Moreover, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from Sb2S3, leading to the formation of [S2Sb-SbS2] SUs. When CdS is added into GeS2 glass, [Cd4GeS6] polyhedra are formed, resulting in a strong crystallization tendency. In addition, Ge atoms in [S3Ge-GeS3] SUs tend to capture S atoms from CdS, resulting in the dissolution of Ge-Ge bond. Co-melting of Sb2S3 or CdS with GeS2 reduces the viscosity of the melt and improves the homogeneity of the glass. The GeS2 glass can only dissolve up to 10-mol% CdS without crystallization. In comparison, GeS2-SbzS3 glasses can dissolve up to 20-mo1% CdS, implying that Sb2S3 could delay the construction of [Cd4GeS6] polyhedron and increase the dissolving amount of CdS in the glass.
基金Project partially supported by the National Key Research and Development Program of China(Grant Nos.2016YFB0303802 and 2016YFB0303803)the National Natural Science Foundation of China(Grant No.61775110)sponsored by K C Wong Magna Fund in Ningbo University。
文摘Novel chalcogenide glasses of pseudo-binary(100-x)Sb_(2)S_(3-x)CuI systems were synthesized by traditional meltquenching method.The glass-forming region of Sb_(2)S_(3)-CuI system was determined ranging from x=30 mol% to 40 mol%.CuI acts as a non-bridging modifier to form appropriate amount of [SbSI] structural units for improving the glass-forming ability of Sb_(2)S_(3).Particularly,as-prepared glassy sample is able to transmit light beyond 14 μm,which is the wider transparency region than most sulfide glasses.Their physical properties,including Vickers hardness(Hv),density(ρ),and ionic conductivity(σ) were characterized and analyzed with the compositional-dependent Raman spectra.These experimental results would provide useful knowledge for the development of novel multi-spectral optical materials and glassy electrolytes.
基金Project supported by the National Natural Science Fundation of China(Grant No.11404286)the Natural Science Fundation of Zhejiang Province,China(Grant No.LY15F050010)the Scientific Research Foundation of Zhejiang University of Technology,China(Grant No.1401109012408)
文摘Based on the designed As2Se3 and As2S3 chalcogenide glass photonic crystal fiber(PCF) and the scalar nonlinear Schrdinger equation,the effects of pump power and wavelength on modulation instability(MI) gain are comprehensively studied in the abnormal dispersion regime of chalcogenide glass PCF.Owing to high Raman effect and high nonlinearity,ultra-broadband MI gain is obtained in chalcogenide glass PCF.By choosing the appropriate pump parameter,the MI gain bandwidth reaches 2738 nm for the As2Se3 glass PCF in the abnormal-dispersion region,while it is 1961 nm for the As2S3 glass PCF.
文摘Decreasing the absorption is a key process for chalcogenide glass preparation. The glass character of oxygen absorption and some means to remove the oxygen absorption were introduced.