针对自然条件下原木端面图像的分割问题,结合原木端面图像的特点,改进传统CV(Chan and Vese)模型,对演化曲线内部使用梯度进行拟合,同时融入局部图像拟合LIF(Local Image Fitting)模型,加入圆形先验知识,提出了基于圆形约束的改进活动...针对自然条件下原木端面图像的分割问题,结合原木端面图像的特点,改进传统CV(Chan and Vese)模型,对演化曲线内部使用梯度进行拟合,同时融入局部图像拟合LIF(Local Image Fitting)模型,加入圆形先验知识,提出了基于圆形约束的改进活动轮廓模型CV-LIF,将全局能量和局部能量结合到一起,共同约束轮廓线的演化。在对图像进行预分割的基础上,利用多水平集表示待分割区域,运用基于圆形约束的改进活动轮廓模型对每个水平集区域进行再分割,解决了复杂背景下多个原木端面分割不准确的问题。通过实验,分别对单个及多个原木端面图像进行分割,结果表明该方法可以较好地分割出图像中的原木端面,而且具有较好的抗噪性能,实现速度较快。展开更多
文摘针对自然条件下原木端面图像的分割问题,结合原木端面图像的特点,改进传统CV(Chan and Vese)模型,对演化曲线内部使用梯度进行拟合,同时融入局部图像拟合LIF(Local Image Fitting)模型,加入圆形先验知识,提出了基于圆形约束的改进活动轮廓模型CV-LIF,将全局能量和局部能量结合到一起,共同约束轮廓线的演化。在对图像进行预分割的基础上,利用多水平集表示待分割区域,运用基于圆形约束的改进活动轮廓模型对每个水平集区域进行再分割,解决了复杂背景下多个原木端面分割不准确的问题。通过实验,分别对单个及多个原木端面图像进行分割,结果表明该方法可以较好地分割出图像中的原木端面,而且具有较好的抗噪性能,实现速度较快。