A 28 V-half-regulated power bus topology and an integrated PCDU (Power Conditioning and Distribution Unit) were adopted to meet the energy demand for the Chang'e 4 relay satellite.This paper first introduces the m...A 28 V-half-regulated power bus topology and an integrated PCDU (Power Conditioning and Distribution Unit) were adopted to meet the energy demand for the Chang'e 4 relay satellite.This paper first introduces the mission features and composition of the PSDS (Power Supply and Distribution System) for the Chang'e 4 relay satellite.Due to this satellite's unusual orbit,operational mode and project restrictions,special analysis and design was conducted on the PSDS from the perspective of weight-reduction,power management,and reliability and so on.Extreme low temperature storage of SA (Solar Array) was considered and how the antenna affects the SA was analyzed.A new kind of high-specific-energy 45 Ah (Ampere-hour) battery cell was used for the first time.To make sure that the satellite would successfully pass the long shadow zones,a 100% DOD (Depth of Discharge) experiment was carried out on the battery.Since the sunlight is almost always available and there are very few times for the battery to charge or discharge,battery care to extend its lifetime is also discussed.PCDU is a device that integrates power conditioning and power distribution in one unit.The PCDU on Chang'e 4 relay satellite can output more power with less weight because of the adoption of a 28 V-half-regulated power bus topology which was also used for the first time and used lighter material for its mechanical framework.Experiment under low temperature on PCDU was conducted as well and a hot backup equalizing charge technique which is beneficial to keep performance of the battery is illustrated.The power distribution module,which is a module of PCDU,enhances the power utilization security by utilizing a static impedance measurement and build-in-test to avoid possible short circuits.As for EED (Electrical Explosive Device) module,a protection plug was specially designed and three switches with different functions were connected in series to prevent the EED from exploding by error.In addition,the allowable minimum EED bus voltage for each EED was evaluated in case of low battery voltage caused by the possible postponement of the launching time.Complete verification experiments on the ground were conducted to confirm the correctness of the design and on-orbit test data conformed to the expected results and theoretical calculation.The power supply and distribution system has been working normally since the day the Chang'e 4 relay satellite was launched into space.展开更多
“嫦娥四号”中继星目前正稳定运行在地月L2点使命轨道,期间进行了再生伪码测距试验,试验期间交叉进行了再生伪码测距和侧音测距。利用“嫦娥四号”中继星在地月L2点使命轨道的再生伪码测距数据和侧音测距数据,进行了定轨精度评估。结...“嫦娥四号”中继星目前正稳定运行在地月L2点使命轨道,期间进行了再生伪码测距试验,试验期间交叉进行了再生伪码测距和侧音测距。利用“嫦娥四号”中继星在地月L2点使命轨道的再生伪码测距数据和侧音测距数据,进行了定轨精度评估。结果显示再生伪码测距数据的均方根误差(Root Mean Square Error,RMS)优于侧音测距数据RMS一个量级,同时再生伪码测距数据定轨和预报精度优于侧音测距数据一倍。这对再生伪码测距在中国后续深空探测任务中的应用具有参考意义。展开更多
“嫦娥四号”中继星于2018年6月14日成功进入地月L2点Halo轨道,承担地面测控站与“嫦娥四号”着陆器的数据传输功能。目前“嫦娥四号”中继星处于稀疏观测模式,平均4~5天进行一次观测。分析了2021年1月“嫦娥四号”中继星绕地月L2点的...“嫦娥四号”中继星于2018年6月14日成功进入地月L2点Halo轨道,承担地面测控站与“嫦娥四号”着陆器的数据传输功能。目前“嫦娥四号”中继星处于稀疏观测模式,平均4~5天进行一次观测。分析了2021年1月“嫦娥四号”中继星绕地月L2点的定轨精度,结果表明:中继星绕L2点轨道精度优于2 km,包含有甚长基线干涉测量技术(Very Long Baseline Interferometry,VLBI)时延和时延率的弧段达到百米量级;在有VLBI观测的前提下,合理分配测距和测速弧段的覆盖时段,能在数据覆盖率相同的情况下有效提高轨道精度。展开更多
2018-06嫦娥四号中继星发射任务圆满完成,为2018-12的嫦娥四号月球背面降落任务打下良好的基础,其中甚长基线干涉测量技术(very long baseline interferometry,VLBI)测轨分系统在卫星的定位、变轨等方面起到了重要的作用。统计了嫦娥四...2018-06嫦娥四号中继星发射任务圆满完成,为2018-12的嫦娥四号月球背面降落任务打下良好的基础,其中甚长基线干涉测量技术(very long baseline interferometry,VLBI)测轨分系统在卫星的定位、变轨等方面起到了重要的作用。统计了嫦娥四号中继星任务实时阶段VLBI观测的时延、时延率和定位结果的精度,讨论了定位归算在嫦娥四号中继星轨控弧段实时轨迹监测中的应用。在中继星进入Halo轨道的过程中,能够实时监测到定位归算结果给出的轨道根数变化,以实时监测变轨情况,并通过事后与定轨结果比对,判断定位结果的正确性与准确性,从而为后续飞行任务提供了一种新的Halo轨道实时监测的方法。展开更多
文摘A 28 V-half-regulated power bus topology and an integrated PCDU (Power Conditioning and Distribution Unit) were adopted to meet the energy demand for the Chang'e 4 relay satellite.This paper first introduces the mission features and composition of the PSDS (Power Supply and Distribution System) for the Chang'e 4 relay satellite.Due to this satellite's unusual orbit,operational mode and project restrictions,special analysis and design was conducted on the PSDS from the perspective of weight-reduction,power management,and reliability and so on.Extreme low temperature storage of SA (Solar Array) was considered and how the antenna affects the SA was analyzed.A new kind of high-specific-energy 45 Ah (Ampere-hour) battery cell was used for the first time.To make sure that the satellite would successfully pass the long shadow zones,a 100% DOD (Depth of Discharge) experiment was carried out on the battery.Since the sunlight is almost always available and there are very few times for the battery to charge or discharge,battery care to extend its lifetime is also discussed.PCDU is a device that integrates power conditioning and power distribution in one unit.The PCDU on Chang'e 4 relay satellite can output more power with less weight because of the adoption of a 28 V-half-regulated power bus topology which was also used for the first time and used lighter material for its mechanical framework.Experiment under low temperature on PCDU was conducted as well and a hot backup equalizing charge technique which is beneficial to keep performance of the battery is illustrated.The power distribution module,which is a module of PCDU,enhances the power utilization security by utilizing a static impedance measurement and build-in-test to avoid possible short circuits.As for EED (Electrical Explosive Device) module,a protection plug was specially designed and three switches with different functions were connected in series to prevent the EED from exploding by error.In addition,the allowable minimum EED bus voltage for each EED was evaluated in case of low battery voltage caused by the possible postponement of the launching time.Complete verification experiments on the ground were conducted to confirm the correctness of the design and on-orbit test data conformed to the expected results and theoretical calculation.The power supply and distribution system has been working normally since the day the Chang'e 4 relay satellite was launched into space.
文摘“嫦娥四号”中继星目前正稳定运行在地月L2点使命轨道,期间进行了再生伪码测距试验,试验期间交叉进行了再生伪码测距和侧音测距。利用“嫦娥四号”中继星在地月L2点使命轨道的再生伪码测距数据和侧音测距数据,进行了定轨精度评估。结果显示再生伪码测距数据的均方根误差(Root Mean Square Error,RMS)优于侧音测距数据RMS一个量级,同时再生伪码测距数据定轨和预报精度优于侧音测距数据一倍。这对再生伪码测距在中国后续深空探测任务中的应用具有参考意义。
文摘“嫦娥四号”中继星于2018年6月14日成功进入地月L2点Halo轨道,承担地面测控站与“嫦娥四号”着陆器的数据传输功能。目前“嫦娥四号”中继星处于稀疏观测模式,平均4~5天进行一次观测。分析了2021年1月“嫦娥四号”中继星绕地月L2点的定轨精度,结果表明:中继星绕L2点轨道精度优于2 km,包含有甚长基线干涉测量技术(Very Long Baseline Interferometry,VLBI)时延和时延率的弧段达到百米量级;在有VLBI观测的前提下,合理分配测距和测速弧段的覆盖时段,能在数据覆盖率相同的情况下有效提高轨道精度。
文摘2018-06嫦娥四号中继星发射任务圆满完成,为2018-12的嫦娥四号月球背面降落任务打下良好的基础,其中甚长基线干涉测量技术(very long baseline interferometry,VLBI)测轨分系统在卫星的定位、变轨等方面起到了重要的作用。统计了嫦娥四号中继星任务实时阶段VLBI观测的时延、时延率和定位结果的精度,讨论了定位归算在嫦娥四号中继星轨控弧段实时轨迹监测中的应用。在中继星进入Halo轨道的过程中,能够实时监测到定位归算结果给出的轨道根数变化,以实时监测变轨情况,并通过事后与定轨结果比对,判断定位结果的正确性与准确性,从而为后续飞行任务提供了一种新的Halo轨道实时监测的方法。