An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MO...An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.展开更多
The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased th...The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased the degree of difficulty in such research. Thus the research aims are to discover the controlling factors of solutional voids in feldspars and to predict favorable regions for these voids. Macroscopic and systematic researches into the relationship between the kaolinite content in the feldspar solutional void developed area of the Chang 2 reservoir group of the Triassic Yanchang Formation in the Midwest Ordos Basin and the solutional void in feldspar have been made, and from this it can be determined that the kaolinite content has an indicative function to the distribution of the solutional void in feldspar. Solutional void in feldspar is relatively well developed at the area where kaolinite content is high. Although the factors affecting kaolinite content are complicated, yet that of the research area is mainly affected by the impact of the leaching atmospheric water acting on the palaeogeomorphology. Three favorable zone belts for the development of solutional voids in feldspars are forecasted on the basis of restoration of palaeogeomorphology.展开更多
1 Introduction Yanchang Formation in Upper Triassic,Ordos basin contains the most abundant hydrocarbon resources in North China(Wang et al.,2014).The sandstones are the most important oil-bearing reservoirs in Yanchang
Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeabilit...Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeability reservoir belongs to the classification of middle-to-fine sized feldspar sandstone, with its components being low in ma- turity, deposited in distributary rivers in the front of the delta; 2) the reservoir is obviously dominated by a low or a very low permeability with a linear variation tendency different from that of the ultra-low permeability reservoir; 3) the spa- tial variation in lithology and physical properties of the reservoir are controlled by the sedimentary facies zones, and 4) the physical property of the reservoir is significantly influenced by clastic constituents and their structure, and the con- stituent of cement materials and their content. The result also shows that the diagenesis action of the reservoir is quite strong in which dissolution greatly modified the reservoir In addition, the inter-granular dissolved pores are the mainly developed ones and the micro-structure is dominated by the combination of middle-to-large sized pores with fine-to-coarse throats. Finally, the radius of the throats is in good exponential correlation with permeability and the seepage capacity comes from those large sized throats.展开更多
Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy togeth...Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.展开更多
Exploring anode materials with high energy and power density is one of the critical milestones in developing sodium-ion batteries/capacitors(SIBs/SICs).Here,the Mo and W-based bimetallic organic framework(Mo-W-MOF)wit...Exploring anode materials with high energy and power density is one of the critical milestones in developing sodium-ion batteries/capacitors(SIBs/SICs).Here,the Mo and W-based bimetallic organic framework(Mo-W-MOF)with core-shell structure is first formed by a facile strategy,followed by a selenization and carbonization strategy to finally prepare multileveled Mo WSe_(2)/WO_(3)/C anode materials with core-shell petal like curled nanosheet structure.Between the petal(MoSe_(2))-core(WO_(3))structure,the formation of WSe_(2)flakes by partial selenization on the surface of WO_(3)serves as a heterogeneous connection between MoSe_(2)and WO_(3).The enlarged layer distance(0.677 nm)between MoSe_(2)and WSe_(2)can facilitate the rapid transfer of Na+and electrons.The density functional theory(DFT)calculations verify that the Mo WSe_(2)/WO_(3)/C heterostructure performs excellent metallic properties.Ex-situ X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and transmission electron microscopy(TEM)confirm the activation process from the initial insertion reaction to the later conversion reaction.Resultantly,when employed as the anode of SIBs,a remarkable capacity of 384.3 mA h g-1after 950 cycles at 10 A g^(-1)is performed.Furthermore,the SICs assembled with commercial activated carbon(AC)as the cathode exhibits a remarkable energy density of 81.86 W h kg^(-1)(at 190 W kg^(-1))and 72.83 W h kg^(-1)(at 3800 W kg^(-1)).The unique structural design and the reaction investigation of the electrode process can provide a reference for the development of transition metal chalcogenides anodes.展开更多
Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for t...Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly.展开更多
ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray...ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.展开更多
基金supported by the National Aeronautics and Space Administration under grant number 80NSSC20K0352.
文摘An improved algorithm for computing multiphase flows is presented in which the multimaterial Moment-of-Fluid(MOF)algorithm for multiphase flows,initially described by Li et al.(2015),is enhanced addressing existing MOF difficulties in computing solutions to problems in which surface tension forces are crucial for understanding salient flow mechanisms.The Continuous MOF(CMOF)method is motivated in this article.The CMOF reconstruction method inherently removes the"checkerboard instability"that persists when using the MOF method on surface tension driven multiphase(multimaterial)flows.The CMOF reconstruction algorithm is accelerated by coupling the CMOF method to the level set method and coupling the CMOF method to a decision tree machine learning(ML)algorithm.Multiphase flow examples are shown in the two-dimensional(2D),three-dimensional(3D)axisymmetric"RZ",and 3D coordinate systems.Examples include two material and three material multiphase flows:bubble formation,the impingement of a liquid jet on a gas bubble in a cryogenic fuel tank,freezing,and liquid lens dynamics.
文摘The development of pores in a clastic reservoir is one of the most important research subjects in oil-gas exploration and development, whereas the many reasons for the formation of secondary porosity have increased the degree of difficulty in such research. Thus the research aims are to discover the controlling factors of solutional voids in feldspars and to predict favorable regions for these voids. Macroscopic and systematic researches into the relationship between the kaolinite content in the feldspar solutional void developed area of the Chang 2 reservoir group of the Triassic Yanchang Formation in the Midwest Ordos Basin and the solutional void in feldspar have been made, and from this it can be determined that the kaolinite content has an indicative function to the distribution of the solutional void in feldspar. Solutional void in feldspar is relatively well developed at the area where kaolinite content is high. Although the factors affecting kaolinite content are complicated, yet that of the research area is mainly affected by the impact of the leaching atmospheric water acting on the palaeogeomorphology. Three favorable zone belts for the development of solutional voids in feldspars are forecasted on the basis of restoration of palaeogeomorphology.
基金financially supported by the National Natural Science Foundation of China (grant No. 41272115)
文摘1 Introduction Yanchang Formation in Upper Triassic,Ordos basin contains the most abundant hydrocarbon resources in North China(Wang et al.,2014).The sandstones are the most important oil-bearing reservoirs in Yanchang
文摘Characteristics of Chang 21 low permeability sandstone reservoir of Shunning oil field are analyzed and evaluated based on the data of well logging and experiment. The result shows that 1) the Chang 21 low permeability reservoir belongs to the classification of middle-to-fine sized feldspar sandstone, with its components being low in ma- turity, deposited in distributary rivers in the front of the delta; 2) the reservoir is obviously dominated by a low or a very low permeability with a linear variation tendency different from that of the ultra-low permeability reservoir; 3) the spa- tial variation in lithology and physical properties of the reservoir are controlled by the sedimentary facies zones, and 4) the physical property of the reservoir is significantly influenced by clastic constituents and their structure, and the con- stituent of cement materials and their content. The result also shows that the diagenesis action of the reservoir is quite strong in which dissolution greatly modified the reservoir In addition, the inter-granular dissolved pores are the mainly developed ones and the micro-structure is dominated by the combination of middle-to-large sized pores with fine-to-coarse throats. Finally, the radius of the throats is in good exponential correlation with permeability and the seepage capacity comes from those large sized throats.
基金Project supported by the National Key Research and Development Program of China(Grant Nos.2023YFF0719200 and 2022YFA1404004)the National Natural Science Foundation of China(Grant Nos.62322115,61988102,61975110,62335012,and 12074248)+3 种基金111 Project(Grant No.D18014)the Key Project supported by Science and Technology Commission Shanghai Municipality(Grant No.YDZX20193100004960)Science and Technology Commission of Shanghai Municipality(Grant Nos.22JC1400200 and 21S31907400)General Administration of Customs People’s Republic of China(Grant No.2019HK006)。
文摘Chalcogenide superlattices Sb_(2)Te_(3)-GeTe is a candidate for interfacial phase-change memory(iPCM) data storage devices.By employing terahertz emission spectroscopy and the transient reflectance spectroscopy together,we investigate the ultrafast photoexcited carrier dynamics and current transients in Sb_(2)Te_(3)-GeTe superlattices.Sample orientation and excitation polarization dependences of the THz emission confirm that ultrafast thermo-electric,shift and injection currents contribute to the THz generation in Sb_(2)Te_(3)-GeTe superlattices.By decreasing the thickness and increasing the number of GeTe and Sb_(2)Te_(3) layer,the interlayer coupling can be enhanced,which significantly reduces the contribution from circular photo-galvanic effect(CPGE).A photo-induced bleaching in the transient reflectance spectroscopy probed in the range of~1100 nm to~1400 nm further demonstrates a gapped state resulting from the interlayer coupling.These demonstrates play an important role in the development of iPCM-based high-speed optoelectronic devices.
基金supported by the National Natural Science Foundation of China(22008053,52002111)the Key Research and Development Program of Hebei Province(20310601D,205A4401D)the Ministry of Higher Education of Malaysia for the Fundamental Research Grant(FRGS/1/2018/STG02/UM/02/10)awarded to Woo Haw Jiunn and University of Malaya research grant(GPF 038B-2018)。
文摘Exploring anode materials with high energy and power density is one of the critical milestones in developing sodium-ion batteries/capacitors(SIBs/SICs).Here,the Mo and W-based bimetallic organic framework(Mo-W-MOF)with core-shell structure is first formed by a facile strategy,followed by a selenization and carbonization strategy to finally prepare multileveled Mo WSe_(2)/WO_(3)/C anode materials with core-shell petal like curled nanosheet structure.Between the petal(MoSe_(2))-core(WO_(3))structure,the formation of WSe_(2)flakes by partial selenization on the surface of WO_(3)serves as a heterogeneous connection between MoSe_(2)and WO_(3).The enlarged layer distance(0.677 nm)between MoSe_(2)and WSe_(2)can facilitate the rapid transfer of Na+and electrons.The density functional theory(DFT)calculations verify that the Mo WSe_(2)/WO_(3)/C heterostructure performs excellent metallic properties.Ex-situ X-ray diffraction(XRD),X-ray photoelectron spectroscopy(XPS),and transmission electron microscopy(TEM)confirm the activation process from the initial insertion reaction to the later conversion reaction.Resultantly,when employed as the anode of SIBs,a remarkable capacity of 384.3 mA h g-1after 950 cycles at 10 A g^(-1)is performed.Furthermore,the SICs assembled with commercial activated carbon(AC)as the cathode exhibits a remarkable energy density of 81.86 W h kg^(-1)(at 190 W kg^(-1))and 72.83 W h kg^(-1)(at 3800 W kg^(-1)).The unique structural design and the reaction investigation of the electrode process can provide a reference for the development of transition metal chalcogenides anodes.
文摘Paraffin/γ-Al2O3 composites as phase change energy storage materials were prepared by absorbing paraffin in porous network of γ-Al2O3.In the composite materials,paraffin was used as a phase change material(PCM)for thermal energy storage,and γ-Al2O3 acted as supporting materials.Characterizations were conducted to evaluate the energy storage performance of the composites,and differential scanning calorimeter results showed that the PCM-3 composite has melting latent heat of 112.9 kJ/kg with a melting temperature of 62.9 ℃.Due to strong capillary force and surface tension between paraffin and γ-Al2O3,the leakage of melted paraffin from the composites can be effectively prevented.Therefore,the paraffin/γ-Al2O3 composites have a good thermal stability and can be used repeatedly.
基金Project(2003AA332040) supported by the National High Technology Research and Development Program of China
文摘ZrO2-mullite nano-ceramics were fabricated by in-situ controlled crystallizing from SiO2-Al2O3-ZrO2 amorphous bulk. The thermal transformation sequences of the SiO2-Al2O3-ZrO2 amorphous bulk were investigated by X-ray diffraction, infrared spectrum, scanning electron microscope and differential scanning calorimetric. And the mechanical properties of the nano-ceramics were studied. The results show that the bulks are still in amorphous state at 900 ℃ and the t-ZrO2 forms at about 950 ℃ with a faint spinel-like phase which changes into mullite on further heating. ZrO2 and mullite become major phases at 1 100 ℃ and an amount of m-ZrO2 occur at the same time. The sample heated at 950 ℃ for 2 h and then at 1 100 ℃ for 1 h shows very dense and homogenous microstructure with ball-like grains in size of 20-50 nm. With the increase of crystallization temperature up to 1 350 ℃, the grains grow quickly and some grow into lath-shaped grains with major diameter of 5 μm. After two-step treatment the highest micro-hardness, flexural strength and fracture toughness of the samples are 13.72 GPa, 520 MPa and 5.13 MPa·m1/2, respectively.