Climate change has grown more apparent in recent years with people becoming more aware of its potentially disastrous consequences. Flooding is one of the many consequences of a changing climate in Kenya known to cause...Climate change has grown more apparent in recent years with people becoming more aware of its potentially disastrous consequences. Flooding is one of the many consequences of a changing climate in Kenya known to cause immense devastation resulting in the loss of lives and property. This paper discusses the risk of flooding in Kenya as one of the many outcomes of climate change in the face of urgency to adapt Kenya’s built environment to flooding which is likely to continue to prevail in the decades as a result of the looming climate change. It also sought to evaluate the physical, traumatic, and psychological effects on communities affected by flood events. This cross-sectional survey, both qualitative and quantitative in nature, executed between 13<sup>th</sup> January 2021 and 14<sup>th</sup> July 2021 with 132 respondents along the western shoreline of Lake Baringo, near Marigat Town focused on the flood levels, structures, their materials, and quantities. Results show that the area covered by Lake Baringo increased by 18% from 236 km<sup>2</sup> to 278 km<sup>2</sup>. The depth of floods ranged from 0.3 m to 1.2 m and exceeded 1.6 m during heavy rainfall up to 3.2 m with homes completely submerged by the lake. Flooding was experienced more by residents living in low areas nearer to the shoreline of the lake as compared to those living on higher grounds. 100% of the structures didn’t have the architectural technology to withstand the impacts of flooding with 59% of housing made of corrugated iron sheets both on wall and roofing, 22% of mud houses roofed with either corrugated iron sheets, 10% being timber with thatch and only 8% stoned walled houses. This predisposed all the residents to the harmful impacts of flooding. Piled sandbags by locals as a mitigating measure proved inadequate to withstand the forces of the rising waters. Flood walls were built around local lodges near the lake but the rising water level quickly breached these defences. The study recommends that county and national governing authorities develop flood adaptation strategies for resilience. These include long-term land-use planning, the establishment of early warning systems, evacuation plans, identification of vulnerable or high-risk populations, measures to ensure water quality, sanitation, and hygiene. Flood-resilient architecture including stilt and floating houses that mechanically rise and fall with respect to the highest water mark are recommended during flood events. Bridges on swollen rivers and resilient construction materials like reinforced concrete are to be used for sustainable development for flood risk adaptation.展开更多
Yala Wetland is a complex of Nzoia and Yala rivers that drain their waters into Lake Victoria, but face various pressure which is thought to originate from the impacts of climate change. The riparian communities are g...Yala Wetland is a complex of Nzoia and Yala rivers that drain their waters into Lake Victoria, but face various pressure which is thought to originate from the impacts of climate change. The riparian communities are generally poor and use the wetland resources for small-holder livelihood activities. This paper describes how community climate change adaptation assessment (C3A2) tools were applied to identify resilient community-level adaptation options and would inform local climate adaptation planning. Eight participatory C3A2 tools were applied for data collection in which two (adaptation attributes and story-telling) were administered at the meso or local government (County) level while all the eight tools (community protocol, risk mapping, techno-transect, resilience ranking, community calendars, story-telling, adaptation attributes and give back) were administered at the micro or community level. Qualitative research method was adopted and 80 respondents (20 at meso and 60 at micro) were purposively selected for the study. Data were collected through interviews, focus group discussions (FGD), and plenary discussions. Data were analyzed at four levels: pre-analysis in situ, daily team triangulation, team conclusions, and cross-community reporting. The study found that communities experienced climate risks that tended to shift along with prolonged and irregular hydro-meteorological events, which affected their capacities for adaptation especially the resource-constrained individuals and vulnerable households. Drought (45%) and flood hazards (39%) were the most felt strongly. Drought was manifested mainly by prolonged dry-spell, increased atmospheric temperatures, and strong winds while floods were characterized by unpredictable and short but high-intensity rainfall with associated loss of lives and property damage. Women, children, and poor households were the most exposed to climatic hazards. Farm/agro-forestry was the most perceived adaptation strategy for drought, flood, and soil erosion while alternative livelihoods particularly ecotourism was the commonly perceived adaptation strategy for human-wildlife conflict (HWC). Three community-based adaptation action plans (CBAP) were prepared to guide future village-level planning and development. The CBAPs were used to identify three sample projects which were funded by the donor and implemented by the community. The C3A2 approach provides adequate participatory tools that can be applied in the lake and river basins, and potentially other ecosystems to guide the development of community-based adaptation plans and resilient community-based adaptation projects with wider local acceptance especially those geared towards designing programs for climate-smart livelihoods. However, the application of the methodology may be site-specific and the tools can be administered based on local scenarios and the availability of resources.展开更多
The changes of grassland landscape pattern in Qinghai Lake watershed from 1977 to 2000 were studied by adopting 3S technologies and landscape pattern analysis.The results showed that the amount of grassland landscape ...The changes of grassland landscape pattern in Qinghai Lake watershed from 1977 to 2000 were studied by adopting 3S technologies and landscape pattern analysis.The results showed that the amount of grassland landscape patch reduced,landscape fragmentation and resolution decreased,but average patch area and fractal dimension increased;through analyzing the landscape change of counties in Qinghai Lake watershed,the grassland landscape structure of Tianjun,Gangcha and Haiyan counties showed a similar change trend;but in Gonghe County grassland patch amount,landscape fragmentation and resolution increased,average patch area decreased,that is,the grassland landscape structure in this county showed a different trend.展开更多
Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the auth...Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the authors explain how geological hazards in salt lake areas are caused by natural agents and how humans can seek benefits, avoid hazards and reduce losses on the premise that they have monitored and mastered the trend of salt lake changes in advance and even can store flood and recharge water in lakes and extract saline resources. The climate in western China is probably turning from warm-dry to warm-moist. The authors analyze the change trend of salt lakes sensu lato (with salinity≥0.3 wt% (NaCl)eq) and salt lakes sensu stricto (with salinity ≥3.5 wt% (NaCl)eq) in China in such climatic conditions and distinguish three types of salt lake areas (i.e. lake water rising type, lake water falling type and lake water rising and unstable type) according to the characteristics of lake water rising and shrinking. In order to conform to the climatic and lake changes in China's salt lake areas, the authors propose to add and improve hydrological and meteorological observation stations and integrate observations with remote sensing monitoring in important salt lake areas and set up multidisciplinary and interdepartmental basic projects to monitor and study recent climatic and environmental changes in salt lake areas of western China. Moreover, it is necessary to build additional flood-control and drought-preventing water conservancy facilities in key salt lake areas and work out measures for ecological protection in salt lake areas. Full consideration should be given to the influence of flooding when building saltfields and implementing capital projects.展开更多
Zonag, Kusai, Hedin Noel and Yanhu Lakes are independent inland lakes in the Hoh Xil region on the Qinghai-Tibet Plateau. In September2011, Zonag Lake burst after the water level had increased for many years. Floods f...Zonag, Kusai, Hedin Noel and Yanhu Lakes are independent inland lakes in the Hoh Xil region on the Qinghai-Tibet Plateau. In September2011, Zonag Lake burst after the water level had increased for many years. Floods flowed through Kusai and Hedin Noel Lakes into Yanhu Lake; since then, the four small endorheic catchments merged into one larger catchment. This hydrological process caused the rapid shrinkage of Zonag Lake and continuous expansion of Yanhu Lake. In this study,based on satellite images, meteorological data and field investigations, we examined the dynamic changes in the four lakes and analyzed the influencing factors. The results showed that before 2011, the trends in the four lake areas were similar and displayed several stages. The change in the area of Zonag Lake corresponded well to the change in annual precipitation(AP), but the magnitude of the change was less than that of a non-glacier-fed lake. Although increased precipitation was the dominant factor that caused Zonag Lake to expand, increased glacier melting and permafrost thawing due to climate warming also had significant effects. After the 2011 outburst of Zonag Lake, due to the increasing AP and accelerating glacier melting, the increases in water volume of the three lakes were absorbed by Yanhu Lake, and Yanhu Lake expanded considerably. According to the rapid growth rates in water level and lake area, Yanhu Lake is likely to burst in 1-2 years.展开更多
Understanding the relationship between the changes in lake water volume and climate change can provide valuable information to the recharge sources of lake water. This is particularly true in arid areas such as the Ba...Understanding the relationship between the changes in lake water volume and climate change can provide valuable information to the recharge sources of lake water. This is particularly true in arid areas such as the Badain Jaran Sand Sea, an ecologically sensitive area, where the recharge sources of lakes are heatedly debated. In this study, we determined the areas of 50 lakes (representing 70% of the total permanent lakes in this sand sea) in 1967, 1975, 1990, 2000 and 2010 by analyzing remote-sensing images using image processing and ArGIS software. In general, the total lake area decreased from 1967 to 1990, remained almost unchanged from 1990 to 2000, and increased from 2000 to 2010. Analysis of the relationship between these changes and the contemporaneous changes in annual mean temperature and annual precipitation in the surrounding areas suggests that temperature has significantly affected the lake area, but that the influence of precipitation was minor. These results tend to su- pport the palaeo-water recharge hypothesis for lakes of the Badain Jaran Sand Sea, considering the fact that the distribution and area of lakes are closely related to precipitation and the size of mega-dunes, but the contemporaneous precipitation can hardly balance the lake water.展开更多
A 475-cm long sediment core (QH-2005) from Lake Qinghai was used to carry out multi-proxy analysis of δ18O and body length of ostracod valves and redness and grain size of sediments, in order to reconstruct environ-m...A 475-cm long sediment core (QH-2005) from Lake Qinghai was used to carry out multi-proxy analysis of δ18O and body length of ostracod valves and redness and grain size of sediments, in order to reconstruct environ-mental changes during the past 13500 cal. a BP. The age model was based on 6 14C dates for bulk orgnic carbon (BOC) and 2 14C dates for lignin. The lignin 14C dates are apparently younger than the corresponding layers' BOC 14C dates, indicating that the reservoir age varied from 728 to 1222 a since the Late Glacial and from 2390 to 2490 a immediately before the pre-bomb era. Hence, the 14C age model for Core QH-2005 was corrected by the changing reservoir age. Ostracod δ18O values were primarily related to dilution and evaporative enrichment of the lake water. The reconstructed salinity based on ostracod body length coincides well with ostracod δ18O values. High redness and mean grain size (MZ) values indicate increased riverine supply to Lake Qinghai associated with increasing monsoon rainfall. Multi-proxy results show that climate during 13500-10900 cal. a BP was relatively cold and dry with fre-quent short-term fluctuations; a warm and wet climate began at about 10900 cal. a BP and culminated around 6500 cal. a BP as a result of monsoon strengthening; the climate became cold and dry afterwards and has remained rela-tively stable since 3400 cal. a BP. Our data also reveal short-term (millennial/centennial timescales) climatic fluctua-tions including: Younger Dryas events, ice-rafting events 8 and 1 (by ~11000 cal. a BP and ~1600 cal. a BP respec-tively), 8200 cal. a BP cold event, Little Ice Age and the Medieval Warm Period.展开更多
Based on analysis of parameters of cores taken from Gaoyou Lake, including magnetic susceptibility, grain-size characteristics and sedimentary rate, environmental changes during the modern period were examined with th...Based on analysis of parameters of cores taken from Gaoyou Lake, including magnetic susceptibility, grain-size characteristics and sedimentary rate, environmental changes during the modern period were examined with the assistance of historical records and Gaoyou Lake water level materials. It is concluded that during the modern period a higher value of magnetic susceptibility and a lower sediment grain size coincided with a wet climate, while a lower value of magnetic susceptibility and a higher grain size were related with a dry climate. The results indicate that the climate in the 123 years period from 1880 to 2003AD can be divided into four stages: two low water level stages (1880-1915AD, 1948-1981AD) and two high water level stages (1915-1948AD, 1981-2003AD). It appears that the regional climate generally underwent a dry-wet-dry-wet pattern in 30-year cycles. At present, it is at the end of a wet period, so the regional climate is expected to become dry in the near future. This conclusion corresponds with the climate records in the historical literature of the Gaoyou area, and it also matches with the climatic changes in North Jiangsu area.展开更多
Glacier is a common sensitivity indicator of environmental and global climate change.Examining the relationship between glacier area and climate change will help reveal glacier change mechanisms and future trends.Glac...Glacier is a common sensitivity indicator of environmental and global climate change.Examining the relationship between glacier area and climate change will help reveal glacier change mechanisms and future trends.Glacier changes are also of great significance to the regulation of regional water resources.This study selected the Hala Lake Basin in the northeastern Qinhai-Tibet Plateau as a study area,and examined the relationships between the temporal and spatial change of glaciers in the northeastern Qinghai-Tibet Plateau and climate change based on remote sensing imagery,climatological data,and topographic data during the past 30 years.Results showed that glacier area in the Hala Lake basin fluctuated and decreased from106.24 km2 in 1986 to 78.84 km2 in 2015,with a decreasing rate of 0.94 km2·yr-1.The number of glacier patches,mean patch area,and largest patch index all decreased from 1986 to 2015,while the splitting index increased from 1986 to 2015,indicating that the landscape fragmentation of glacier in the Hala Lake Basin was increasing significantly during the study period.Glacier area change was mainly concentrated in the slopes>25°with an altitude of 4500-5000 m,and the retreating rate of glacier of sunny slope was obviously higher than that of shady slope.Geometric center of glacier in the basin moved from southwest to northeast towards high altitude.Results of the response of glacier extent to climate change showed that temperature was the dominant factor affecting glacier area dynamic change in the Hala Lake Basin.It is predicted that in future several years,the glacier area will decrease and fragment continually as a result of global warming on the Tibetan Plateau.展开更多
The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nep...The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.展开更多
Robust climate warming has led to significant expansion of lakes in the central Tibetan Plateau. Using remote sensing data, our quantitative analysis indicates that Siling Co, a saline lake in a characteristic endorhe...Robust climate warming has led to significant expansion of lakes in the central Tibetan Plateau. Using remote sensing data, our quantitative analysis indicates that Siling Co, a saline lake in a characteristic endorheic basin in the central region of the Plateau, has expanded more than 600 km2 in area since 1976. Particularly since 1995, the lake has signif- icantly expanded in response to increasing precipitation, decreasing water surface evaporation caused by weaker winds and less solar radiation, and increased glacier meltwater draining to the lake. Glacie^lake interactions are important in governing lake expansion and are also part of a feedback loop that influences the local climate. Worsening climatic conditions (decreased precipitation and increased temperatures) that could have caused the lake to shrink during 1976-1994 were offset by increasing glacier meltwater feeding the lake, which made the lake nearly stable. We demonstrate that this pattern changed during 1995-2009, when glacier meltwater actually decreased but participation runoff increased and evaporation decreased, leading to expansion of the lake. If climatic conditions became suitable for further lake development, which would be indicated by expansion in lake area, glacier meltwater could be saved in a stable reservoir.展开更多
Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucia...Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucial role in limiting sustainable socioeconomic development, as well as in sustaining natural ecosystems. Recent climate change, as well as the effects of localized human activity, such as the use of water for irrigation agriculture, may have significant effects on the status of the water resources in the region. Here, we report the results of a study of changes in the areas of lakes in Gonghe Basin, northeastern Tibetan Plateau of China, over the last 60 years. The data were acquired from optical satellite images and demonstrate that the total water area of lakes in Gonghe Basin decreased significantly from the 1950s to 1980s. The cause is ascribed mainly to human activity including exploitation of farmland, against a background of increasing population; in addition, climatic data for the region demonstrate a minor drying trend during this period as the temperature increased slightly. After the construction of several reservoirs, significant amounts of water were redistributed to promote irrigation agriculture and we conclude that this caused a significant shrinkage of the natural lakes. However, both the area of farmland and the population size remained approximately constant after 1990. We conclude that the variation of the total area of lakes during the second period was mainly controlled by climatic factors (precipitation and temperature). As the regional temperature reached a new high, the area of some of the lakes decreased sharply before finally maintaining a relatively steady state. We emphasize that anthropogenic climate change and human activity have both significantly influenced the status of water resources in the arid and semi-arid regions of China.展开更多
The research on the land use/cover change is one of the frontiers and the hot spots in the global change research. Based on the Chinese resource and environment spatial-temporal database, and using the ...The research on the land use/cover change is one of the frontiers and the hot spots in the global change research. Based on the Chinese resource and environment spatial-temporal database, and using the Landsat TM and ETM data of 1990 and 2000 respectively, we analyzed the spatial-temporal characteristics of land use/cover changes in the Dongting Lake area during the last decade. The result shows that during the last ten years there were three land-use types that had changed remarkably. The cultivated land decreased by 0.57% of the total cultivated land. The built-up land and water area expanded, with an increase of 8.97% and 0.43% respectively. The conversion between land use types mostly happened among these three land-use types, especially frequently between cultivated land and water area. The land-use change speed of land-use type is different. Three cities experienced the greatest degree of land-use change among all the administrative districts, which means that the land use in these cities changed much quickly. The following changed area was the west and south of the Dongting Lake area. The slowest changed area is the north and east area.展开更多
According to the analysis of the climate materials including the topographic map in 1975, the TM and CBERS satellite remote sensing materials from the 1980s to 2005 as well as the air temperature, precipitation, evapo...According to the analysis of the climate materials including the topographic map in 1975, the TM and CBERS satellite remote sensing materials from the 1980s to 2005 as well as the air temperature, precipitation, evaporation rate, maximum depth of snow and the biggest depth of frozen soil in the past 45 years, the water level area of four lakes at the southeast of Nagqu, Tibet including Barn Co, Pung Co, Dung Co and Nuripung Co show a distinct trend of expansion in the past 30 years. In 2005, the water level area of the above four lakes increased by 48.2 km^2, 38.2 km^2, 19.8 km^2 and 26.0 km^2 respectively compared to 1975, with the respective increase rate of 25.6%, 28.2%, 16.2% and 37.6%. That is closely related to the warming and humidified climate change in the recent years such as rise of the air temperature increase of the precipitation, decrease of the evaporation rate and permafrost degradation.展开更多
Climate changes are the main motivation for destruction of ecosystems;in fact the effects of these changes on biodiversity and ecosystems are considered as the most challenging cases in present century. Therefore, sin...Climate changes are the main motivation for destruction of ecosystems;in fact the effects of these changes on biodiversity and ecosystems are considered as the most challenging cases in present century. Therefore, since the lakes are the most important services and functions of ecosystems, the effect of climate change on water level fluctuations of Tashk and Bakhtegan Lakes was analyzed as a natural ecosystem in this essay. For this purpose, the data related to six parameters of temperature, precipitation, evaporation, sunshine hours and snowy days were selected during 25-year statistical period (1985-2010), and Mann-Kendall test was used to determine the trend of changes in each time series. Inflow system of the lake, the volume of evaporation and area of water were simulated and fluctuation of lake was also assessed by using dynamic analysis method and to achieve to lake level and analysis of its fluctuations in period under study, the satellite images of Landsat 7 and ETM 5-1 were used in two high waters of April 1987 and April 2010. Results indicate that the lake level has been dropped 6 meters in 2010 compared to the similar period of 1986;in wet years that the rainfall is more than 618/5 mm, high water level is the lake conditions in all months of the year;unlike in most years when rainfall occurred under average of 365.4 mm, lake is faced with dry condition that is mainly due to the reduce of icemaker area, rainfall reduction, increase in evaporation and temperature. These conditions show the extent to which the lake is fragile and affected by climatic conditions that the most obvious evidence of it is decline of genetic storages such as Tashk and Bakhtegan lakes and subsequently instability of the region and reducing of services and ecosystems’ functions.展开更多
Element geochemistry of lake sediments has been widely used to detect climate change because element composition and ratios can reflect the weathering degree in the source area. Given the element composition of lake s...Element geochemistry of lake sediments has been widely used to detect climate change because element composition and ratios can reflect the weathering degree in the source area. Given the element composition of lake sediments from Gulug Co Lake, Hoh Xil, Qinghai-Xizang Plateau, chemical index of alteration (CIA), index of composition variability (ICV) and other element ratios have been used to establish the weathering sequence of this area since 1820 AD. The weathering is so weak that the element composition change is more sensitive to climate change and autochthonous processes. From 1820 to 1984 AD, there were two drier periods with a wetter interval from 1870 to 1945 AD. After 1984 the weather showed a tendency of becoming wet.展开更多
Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics...Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics of lake area changes during 37 years. Results indicated that the nttmber of lakes declined from 94 to 82 and the total surface area was reduced by 3.69 km2 during 1973-2010. The desert lake area reduced by different degrees in different periods, but this occurred most rapidly during 1973-1990. According to the statistics of lake area changes, lake area decreases mainly occurred in the lakes with areas less than 0.2 km2, while the areas of lakes greater than 0.9 km2 only fluctuated. The changes of lake areas were probably due to changes in the quantity of underground water supplies rather than the effects of local climate change or human factors.展开更多
[Objective] The aim was to study the characteristics of climate changes in the surrounding area of Qinghai Lake.[Method] Based on the data of temperature,precipitation and sunshine hours from 5 representative meteorol...[Objective] The aim was to study the characteristics of climate changes in the surrounding area of Qinghai Lake.[Method] Based on the data of temperature,precipitation and sunshine hours from 5 representative meteorological stations in the surrounding area of Qinghai Lake during 1961-2007,the annual,seasonal and decadal variation of meteorological factors were analyzed.[Result] In recent 47 years,temperature showed obvious increase trend in the surrounding area of Qinghai Lake,and annual average temperature increased with the climatic tendency of ≥0.30 ℃/10 a,while annual average minimum temperature increased more significant than annual average temperature and annual average maximum temperature;annual mean precipitation decreased with the climatic tendency of-3.67 mm/10 a,and precipitation in spring and autumn reduced obviously,while precipitation in summer and winter increased slightly;annual sunshine hours also showed decrease trend with the climatic tendency of-1.79 h/10 a,while sunshine hours decreased most obviously in summer,and next came winter,while there was no obvious decrease in spring and autumn.[Conclusion] The study could provide theoretical references for the effective prevention of meteorological disasters in the surrounding area of Qinghai Lake.展开更多
Expanding or shrinking of lakes, especially in the closed basin, directly reflects the balance situation of water\|heat regime in the catchment. Fluctuations of the water\|level can be used as an indicator of climatic...Expanding or shrinking of lakes, especially in the closed basin, directly reflects the balance situation of water\|heat regime in the catchment. Fluctuations of the water\|level can be used as an indicator of climatic and environmental changes. Authors have investigated many lakes in West China in recent years, including lakes in the Tibet Plateau and in the arid area in the northwest China. We found that all lakes have been in shrinkage, some of them were changed into swamp and some dried dramatically up, which caused the abrupt change of the lake environment. This change led the grassland to be retrogression and desertification, and made the eco\|environment deterioration in West China.The Xingcuo Lake, in the height of 3425m ASL with 29km\+2 drainage area, located in the Zoige Basin, Northeastern Tibet Plateau, had changed into swamp in the area of 2km\+2 , and the vast area of peripheral marsh changed into grassland by the years of 1990. But the topographic map in the scale of 1/100000 and aerial photography surveyed at the end of 1960’s show clearly that this lake was in the area of 3 3km\+2 and surrounded by vast area of marshland. In the north central part of the Tibet Plateau, the Gourencuo Lake, in the height of 4650m ASL, was in the area of 23 5km\+2 with the average water depth of 1 3m in 1990. Then a dramatic change had been appearing in the recent years. When authors went there again in 1998,they found that the lake dried fully up. A thin salt crystal layer with saturated brine covered the flat central lake floor. This means that at least 30×10 6 m 3 water volume stored in the lake had been lost by the evaporation in 8 years, and many sand dunes had been formed. This abrupt change of lake environment could be recognized as the result of natural process or climate warming because of no human activity there.展开更多
The large-scale summer monsoon circulations of south Asia makes a strong impact on precipitation in the area of southwestern China including Qinghai-Tibetan Plateau and Yun-Gui Plateau.however,the monsoon is both spat...The large-scale summer monsoon circulations of south Asia makes a strong impact on precipitation in the area of southwestern China including Qinghai-Tibetan Plateau and Yun-Gui Plateau.however,the monsoon is both spatially and temporally complex and smaller-scale circulations are forced by a variety of local or regional orographic effects,local or regional land-atmosphere or展开更多
文摘Climate change has grown more apparent in recent years with people becoming more aware of its potentially disastrous consequences. Flooding is one of the many consequences of a changing climate in Kenya known to cause immense devastation resulting in the loss of lives and property. This paper discusses the risk of flooding in Kenya as one of the many outcomes of climate change in the face of urgency to adapt Kenya’s built environment to flooding which is likely to continue to prevail in the decades as a result of the looming climate change. It also sought to evaluate the physical, traumatic, and psychological effects on communities affected by flood events. This cross-sectional survey, both qualitative and quantitative in nature, executed between 13<sup>th</sup> January 2021 and 14<sup>th</sup> July 2021 with 132 respondents along the western shoreline of Lake Baringo, near Marigat Town focused on the flood levels, structures, their materials, and quantities. Results show that the area covered by Lake Baringo increased by 18% from 236 km<sup>2</sup> to 278 km<sup>2</sup>. The depth of floods ranged from 0.3 m to 1.2 m and exceeded 1.6 m during heavy rainfall up to 3.2 m with homes completely submerged by the lake. Flooding was experienced more by residents living in low areas nearer to the shoreline of the lake as compared to those living on higher grounds. 100% of the structures didn’t have the architectural technology to withstand the impacts of flooding with 59% of housing made of corrugated iron sheets both on wall and roofing, 22% of mud houses roofed with either corrugated iron sheets, 10% being timber with thatch and only 8% stoned walled houses. This predisposed all the residents to the harmful impacts of flooding. Piled sandbags by locals as a mitigating measure proved inadequate to withstand the forces of the rising waters. Flood walls were built around local lodges near the lake but the rising water level quickly breached these defences. The study recommends that county and national governing authorities develop flood adaptation strategies for resilience. These include long-term land-use planning, the establishment of early warning systems, evacuation plans, identification of vulnerable or high-risk populations, measures to ensure water quality, sanitation, and hygiene. Flood-resilient architecture including stilt and floating houses that mechanically rise and fall with respect to the highest water mark are recommended during flood events. Bridges on swollen rivers and resilient construction materials like reinforced concrete are to be used for sustainable development for flood risk adaptation.
文摘Yala Wetland is a complex of Nzoia and Yala rivers that drain their waters into Lake Victoria, but face various pressure which is thought to originate from the impacts of climate change. The riparian communities are generally poor and use the wetland resources for small-holder livelihood activities. This paper describes how community climate change adaptation assessment (C3A2) tools were applied to identify resilient community-level adaptation options and would inform local climate adaptation planning. Eight participatory C3A2 tools were applied for data collection in which two (adaptation attributes and story-telling) were administered at the meso or local government (County) level while all the eight tools (community protocol, risk mapping, techno-transect, resilience ranking, community calendars, story-telling, adaptation attributes and give back) were administered at the micro or community level. Qualitative research method was adopted and 80 respondents (20 at meso and 60 at micro) were purposively selected for the study. Data were collected through interviews, focus group discussions (FGD), and plenary discussions. Data were analyzed at four levels: pre-analysis in situ, daily team triangulation, team conclusions, and cross-community reporting. The study found that communities experienced climate risks that tended to shift along with prolonged and irregular hydro-meteorological events, which affected their capacities for adaptation especially the resource-constrained individuals and vulnerable households. Drought (45%) and flood hazards (39%) were the most felt strongly. Drought was manifested mainly by prolonged dry-spell, increased atmospheric temperatures, and strong winds while floods were characterized by unpredictable and short but high-intensity rainfall with associated loss of lives and property damage. Women, children, and poor households were the most exposed to climatic hazards. Farm/agro-forestry was the most perceived adaptation strategy for drought, flood, and soil erosion while alternative livelihoods particularly ecotourism was the commonly perceived adaptation strategy for human-wildlife conflict (HWC). Three community-based adaptation action plans (CBAP) were prepared to guide future village-level planning and development. The CBAPs were used to identify three sample projects which were funded by the donor and implemented by the community. The C3A2 approach provides adequate participatory tools that can be applied in the lake and river basins, and potentially other ecosystems to guide the development of community-based adaptation plans and resilient community-based adaptation projects with wider local acceptance especially those geared towards designing programs for climate-smart livelihoods. However, the application of the methodology may be site-specific and the tools can be administered based on local scenarios and the availability of resources.
文摘The changes of grassland landscape pattern in Qinghai Lake watershed from 1977 to 2000 were studied by adopting 3S technologies and landscape pattern analysis.The results showed that the amount of grassland landscape patch reduced,landscape fragmentation and resolution decreased,but average patch area and fractal dimension increased;through analyzing the landscape change of counties in Qinghai Lake watershed,the grassland landscape structure of Tianjun,Gangcha and Haiyan counties showed a similar change trend;but in Gonghe County grassland patch amount,landscape fragmentation and resolution increased,average patch area decreased,that is,the grassland landscape structure in this county showed a different trend.
基金This study was supported by the National Natural Science Foundation of China grant 49833010Project of Special Funds for Public Interests Research of the Ministry of Science and Technology grant 2001DIA 10020.
文摘Salt lakes are a mirror of climatic changes and provide holographic records of environmental changes of lakes. According to a study of geological hazards in typical salt lake areas in China and other regions, the authors explain how geological hazards in salt lake areas are caused by natural agents and how humans can seek benefits, avoid hazards and reduce losses on the premise that they have monitored and mastered the trend of salt lake changes in advance and even can store flood and recharge water in lakes and extract saline resources. The climate in western China is probably turning from warm-dry to warm-moist. The authors analyze the change trend of salt lakes sensu lato (with salinity≥0.3 wt% (NaCl)eq) and salt lakes sensu stricto (with salinity ≥3.5 wt% (NaCl)eq) in China in such climatic conditions and distinguish three types of salt lake areas (i.e. lake water rising type, lake water falling type and lake water rising and unstable type) according to the characteristics of lake water rising and shrinking. In order to conform to the climatic and lake changes in China's salt lake areas, the authors propose to add and improve hydrological and meteorological observation stations and integrate observations with remote sensing monitoring in important salt lake areas and set up multidisciplinary and interdepartmental basic projects to monitor and study recent climatic and environmental changes in salt lake areas of western China. Moreover, it is necessary to build additional flood-control and drought-preventing water conservancy facilities in key salt lake areas and work out measures for ecological protection in salt lake areas. Full consideration should be given to the influence of flooding when building saltfields and implementing capital projects.
基金supported by the Science and Technology Project of Ecological Civilization Construction of Beautiful China (No. XDA23060703)the Hundred Talents Program of the Chinese Academy of Sciences (No. 51Y551831)+1 种基金the National Natural Science Foundation of China (No. 41671068, 41571075)the State Key Laboratory of Cryosphere Sciences (No. SKLCS-ZZ2019)
文摘Zonag, Kusai, Hedin Noel and Yanhu Lakes are independent inland lakes in the Hoh Xil region on the Qinghai-Tibet Plateau. In September2011, Zonag Lake burst after the water level had increased for many years. Floods flowed through Kusai and Hedin Noel Lakes into Yanhu Lake; since then, the four small endorheic catchments merged into one larger catchment. This hydrological process caused the rapid shrinkage of Zonag Lake and continuous expansion of Yanhu Lake. In this study,based on satellite images, meteorological data and field investigations, we examined the dynamic changes in the four lakes and analyzed the influencing factors. The results showed that before 2011, the trends in the four lake areas were similar and displayed several stages. The change in the area of Zonag Lake corresponded well to the change in annual precipitation(AP), but the magnitude of the change was less than that of a non-glacier-fed lake. Although increased precipitation was the dominant factor that caused Zonag Lake to expand, increased glacier melting and permafrost thawing due to climate warming also had significant effects. After the 2011 outburst of Zonag Lake, due to the increasing AP and accelerating glacier melting, the increases in water volume of the three lakes were absorbed by Yanhu Lake, and Yanhu Lake expanded considerably. According to the rapid growth rates in water level and lake area, Yanhu Lake is likely to burst in 1-2 years.
基金the National Natural Science Foundation of China (41130533)
文摘Understanding the relationship between the changes in lake water volume and climate change can provide valuable information to the recharge sources of lake water. This is particularly true in arid areas such as the Badain Jaran Sand Sea, an ecologically sensitive area, where the recharge sources of lakes are heatedly debated. In this study, we determined the areas of 50 lakes (representing 70% of the total permanent lakes in this sand sea) in 1967, 1975, 1990, 2000 and 2010 by analyzing remote-sensing images using image processing and ArGIS software. In general, the total lake area decreased from 1967 to 1990, remained almost unchanged from 1990 to 2000, and increased from 2000 to 2010. Analysis of the relationship between these changes and the contemporaneous changes in annual mean temperature and annual precipitation in the surrounding areas suggests that temperature has significantly affected the lake area, but that the influence of precipitation was minor. These results tend to su- pport the palaeo-water recharge hypothesis for lakes of the Badain Jaran Sand Sea, considering the fact that the distribution and area of lakes are closely related to precipitation and the size of mega-dunes, but the contemporaneous precipitation can hardly balance the lake water.
基金supported jointly by the National Basic Research Program of China (No.2010CB833404)the Nanjing Institute of Geography and Limnology, CAS (NIGLAS2011KXJ002)+2 种基金the National Natural Science Foundation of China for Distinguished Young Scholars (No.40625007)the National Natural Science Foundation of China (Nos.40872117 and 40902047)the Knowledge Innovation Program of the Chinese Academy of Sciences (No.NIGLAS2009QD03)
文摘A 475-cm long sediment core (QH-2005) from Lake Qinghai was used to carry out multi-proxy analysis of δ18O and body length of ostracod valves and redness and grain size of sediments, in order to reconstruct environ-mental changes during the past 13500 cal. a BP. The age model was based on 6 14C dates for bulk orgnic carbon (BOC) and 2 14C dates for lignin. The lignin 14C dates are apparently younger than the corresponding layers' BOC 14C dates, indicating that the reservoir age varied from 728 to 1222 a since the Late Glacial and from 2390 to 2490 a immediately before the pre-bomb era. Hence, the 14C age model for Core QH-2005 was corrected by the changing reservoir age. Ostracod δ18O values were primarily related to dilution and evaporative enrichment of the lake water. The reconstructed salinity based on ostracod body length coincides well with ostracod δ18O values. High redness and mean grain size (MZ) values indicate increased riverine supply to Lake Qinghai associated with increasing monsoon rainfall. Multi-proxy results show that climate during 13500-10900 cal. a BP was relatively cold and dry with fre-quent short-term fluctuations; a warm and wet climate began at about 10900 cal. a BP and culminated around 6500 cal. a BP as a result of monsoon strengthening; the climate became cold and dry afterwards and has remained rela-tively stable since 3400 cal. a BP. Our data also reveal short-term (millennial/centennial timescales) climatic fluctua-tions including: Younger Dryas events, ice-rafting events 8 and 1 (by ~11000 cal. a BP and ~1600 cal. a BP respec-tively), 8200 cal. a BP cold event, Little Ice Age and the Medieval Warm Period.
基金Foundation: National Natural Science Foundation of China, No.40271004Acknowledgements: We wish to thank Professor Wang Ying for her supervision during fieldwork and paper writing, Professor Bruce Mitchell, Associate Provost of University of Waterloo, for reviewing the paper, Shi Xiaodong and Luo Weiwei for making ^210pb dating measurements, and Ding Haiyan for participating in grain size and magnetic susceptibility measurements.
文摘Based on analysis of parameters of cores taken from Gaoyou Lake, including magnetic susceptibility, grain-size characteristics and sedimentary rate, environmental changes during the modern period were examined with the assistance of historical records and Gaoyou Lake water level materials. It is concluded that during the modern period a higher value of magnetic susceptibility and a lower sediment grain size coincided with a wet climate, while a lower value of magnetic susceptibility and a higher grain size were related with a dry climate. The results indicate that the climate in the 123 years period from 1880 to 2003AD can be divided into four stages: two low water level stages (1880-1915AD, 1948-1981AD) and two high water level stages (1915-1948AD, 1981-2003AD). It appears that the regional climate generally underwent a dry-wet-dry-wet pattern in 30-year cycles. At present, it is at the end of a wet period, so the regional climate is expected to become dry in the near future. This conclusion corresponds with the climate records in the historical literature of the Gaoyou area, and it also matches with the climatic changes in North Jiangsu area.
基金supported by the National Science Foundation of China (41730854, 41877157, 41530854)the Project supported by State Key Laboratory of Loess and Quaternary Geology (SKLLQG1604)+2 种基金the Project supported by State Key Laboratory of Earth Surface Processes and Resource Ecology (2017-KF-15)the Project of Shandong Province Higher Educational Science and Technology Program (J17KA192)the National Key Research and Development Plan of Shandong Province (2018GSF117021)
文摘Glacier is a common sensitivity indicator of environmental and global climate change.Examining the relationship between glacier area and climate change will help reveal glacier change mechanisms and future trends.Glacier changes are also of great significance to the regulation of regional water resources.This study selected the Hala Lake Basin in the northeastern Qinhai-Tibet Plateau as a study area,and examined the relationships between the temporal and spatial change of glaciers in the northeastern Qinghai-Tibet Plateau and climate change based on remote sensing imagery,climatological data,and topographic data during the past 30 years.Results showed that glacier area in the Hala Lake basin fluctuated and decreased from106.24 km2 in 1986 to 78.84 km2 in 2015,with a decreasing rate of 0.94 km2·yr-1.The number of glacier patches,mean patch area,and largest patch index all decreased from 1986 to 2015,while the splitting index increased from 1986 to 2015,indicating that the landscape fragmentation of glacier in the Hala Lake Basin was increasing significantly during the study period.Glacier area change was mainly concentrated in the slopes>25°with an altitude of 4500-5000 m,and the retreating rate of glacier of sunny slope was obviously higher than that of shady slope.Geometric center of glacier in the basin moved from southwest to northeast towards high altitude.Results of the response of glacier extent to climate change showed that temperature was the dominant factor affecting glacier area dynamic change in the Hala Lake Basin.It is predicted that in future several years,the glacier area will decrease and fragment continually as a result of global warming on the Tibetan Plateau.
文摘The relatively rapid recession of glaciers in the Himalayas and formation of moraine dammed glacial lakes(MDGLs) in the recent past have increased the risk of glacier lake outburst floods(GLOF) in the countries of Nepal and Bhutan and in the mountainous territory of Sikkim in India. As a product of climate change and global warming, such a risk has not only raised the level of threats to the habitation and infrastructure of the region, but has also contributed to the worsening of the balance of the unique ecosystem that exists in this domain that sustains several of the highest mountain peaks of the world. This study attempts to present an up to date mapping of the MDGLs in the central and eastern Himalayan regions using remote sensing data, with an objective to analyse their surface area variations with time from 1990 through 2015, disaggregated over six episodes. The study also includes the evaluation for susceptibility of MDGLs to GLOF with the least criteria decision analysis(LCDA). Forty two major MDGLs, each having a lake surface area greater than 0.2 km2, that were identified in the Himalayan ranges of Nepal, Bhutan, and Sikkim, have been categorized according to their surface area expansion rates in space and time. The lakes have been identified as located within the elevation range of 3800 m and6800 m above mean sea level(a msl). With a total surface area of 37.9 km2, these MDGLs as a whole were observed to have expanded by an astonishing 43.6% in area over the 25 year period of this study. A factor is introduced to numerically sort the lakes in terms of their relative yearly expansion rates, based on their interpretation of their surface area extents from satellite imageries. Verification of predicted GLOF events in the past using this factor with the limited field data as reported in literature indicates that the present analysis may be considered a sufficiently reliable and rapid technique for assessing the potential bursting susceptibility of the MDGLs. The analysis also indicates that, as of now, there are eight MDGLs in the region which appear to be in highly vulnerable states and have high chances in causing potential GLOF events anytime in the recent future.
基金funded by the Major State Basic Research Development Program of China (973 Program) under Grant No. 2010CB951701by the Natural Science Foundation of China (No. 41071042)supported by the Innovation Project of Chinese Academy of Sciences (KZCX2-YW-BR-22)
文摘Robust climate warming has led to significant expansion of lakes in the central Tibetan Plateau. Using remote sensing data, our quantitative analysis indicates that Siling Co, a saline lake in a characteristic endorheic basin in the central region of the Plateau, has expanded more than 600 km2 in area since 1976. Particularly since 1995, the lake has signif- icantly expanded in response to increasing precipitation, decreasing water surface evaporation caused by weaker winds and less solar radiation, and increased glacier meltwater draining to the lake. Glacie^lake interactions are important in governing lake expansion and are also part of a feedback loop that influences the local climate. Worsening climatic conditions (decreased precipitation and increased temperatures) that could have caused the lake to shrink during 1976-1994 were offset by increasing glacier meltwater feeding the lake, which made the lake nearly stable. We demonstrate that this pattern changed during 1995-2009, when glacier meltwater actually decreased but participation runoff increased and evaporation decreased, leading to expansion of the lake. If climatic conditions became suitable for further lake development, which would be indicated by expansion in lake area, glacier meltwater could be saved in a stable reservoir.
基金supported by the National Natural Science Foundation of China (41372180)the Open Foundation of MOE Key Laboratory of Western China’s Environmental System,Lanzhou University and the Fundamental Research Funds for the Central Universities (lzujbky-2015-bt01)
文摘Changes in the status of freshwater resources are a topic of major global, regional and local concern. This is especially so in the arid and semi-arid regions of China, where shortage of water resources plays a crucial role in limiting sustainable socioeconomic development, as well as in sustaining natural ecosystems. Recent climate change, as well as the effects of localized human activity, such as the use of water for irrigation agriculture, may have significant effects on the status of the water resources in the region. Here, we report the results of a study of changes in the areas of lakes in Gonghe Basin, northeastern Tibetan Plateau of China, over the last 60 years. The data were acquired from optical satellite images and demonstrate that the total water area of lakes in Gonghe Basin decreased significantly from the 1950s to 1980s. The cause is ascribed mainly to human activity including exploitation of farmland, against a background of increasing population; in addition, climatic data for the region demonstrate a minor drying trend during this period as the temperature increased slightly. After the construction of several reservoirs, significant amounts of water were redistributed to promote irrigation agriculture and we conclude that this caused a significant shrinkage of the natural lakes. However, both the area of farmland and the population size remained approximately constant after 1990. We conclude that the variation of the total area of lakes during the second period was mainly controlled by climatic factors (precipitation and temperature). As the regional temperature reached a new high, the area of some of the lakes decreased sharply before finally maintaining a relatively steady state. We emphasize that anthropogenic climate change and human activity have both significantly influenced the status of water resources in the arid and semi-arid regions of China.
基金Knowledge Innovation Project of CAS No.KZCX2-310-01+1 种基金 No.KZCX2-SW-415 No.KZCX1-Y-02
文摘The research on the land use/cover change is one of the frontiers and the hot spots in the global change research. Based on the Chinese resource and environment spatial-temporal database, and using the Landsat TM and ETM data of 1990 and 2000 respectively, we analyzed the spatial-temporal characteristics of land use/cover changes in the Dongting Lake area during the last decade. The result shows that during the last ten years there were three land-use types that had changed remarkably. The cultivated land decreased by 0.57% of the total cultivated land. The built-up land and water area expanded, with an increase of 8.97% and 0.43% respectively. The conversion between land use types mostly happened among these three land-use types, especially frequently between cultivated land and water area. The land-use change speed of land-use type is different. Three cities experienced the greatest degree of land-use change among all the administrative districts, which means that the land use in these cities changed much quickly. The following changed area was the west and south of the Dongting Lake area. The slowest changed area is the north and east area.
基金National Natural Science Foundation of China, No.40761005
文摘According to the analysis of the climate materials including the topographic map in 1975, the TM and CBERS satellite remote sensing materials from the 1980s to 2005 as well as the air temperature, precipitation, evaporation rate, maximum depth of snow and the biggest depth of frozen soil in the past 45 years, the water level area of four lakes at the southeast of Nagqu, Tibet including Barn Co, Pung Co, Dung Co and Nuripung Co show a distinct trend of expansion in the past 30 years. In 2005, the water level area of the above four lakes increased by 48.2 km^2, 38.2 km^2, 19.8 km^2 and 26.0 km^2 respectively compared to 1975, with the respective increase rate of 25.6%, 28.2%, 16.2% and 37.6%. That is closely related to the warming and humidified climate change in the recent years such as rise of the air temperature increase of the precipitation, decrease of the evaporation rate and permafrost degradation.
文摘Climate changes are the main motivation for destruction of ecosystems;in fact the effects of these changes on biodiversity and ecosystems are considered as the most challenging cases in present century. Therefore, since the lakes are the most important services and functions of ecosystems, the effect of climate change on water level fluctuations of Tashk and Bakhtegan Lakes was analyzed as a natural ecosystem in this essay. For this purpose, the data related to six parameters of temperature, precipitation, evaporation, sunshine hours and snowy days were selected during 25-year statistical period (1985-2010), and Mann-Kendall test was used to determine the trend of changes in each time series. Inflow system of the lake, the volume of evaporation and area of water were simulated and fluctuation of lake was also assessed by using dynamic analysis method and to achieve to lake level and analysis of its fluctuations in period under study, the satellite images of Landsat 7 and ETM 5-1 were used in two high waters of April 1987 and April 2010. Results indicate that the lake level has been dropped 6 meters in 2010 compared to the similar period of 1986;in wet years that the rainfall is more than 618/5 mm, high water level is the lake conditions in all months of the year;unlike in most years when rainfall occurred under average of 365.4 mm, lake is faced with dry condition that is mainly due to the reduce of icemaker area, rainfall reduction, increase in evaporation and temperature. These conditions show the extent to which the lake is fragile and affected by climatic conditions that the most obvious evidence of it is decline of genetic storages such as Tashk and Bakhtegan lakes and subsequently instability of the region and reducing of services and ecosystems’ functions.
文摘Element geochemistry of lake sediments has been widely used to detect climate change because element composition and ratios can reflect the weathering degree in the source area. Given the element composition of lake sediments from Gulug Co Lake, Hoh Xil, Qinghai-Xizang Plateau, chemical index of alteration (CIA), index of composition variability (ICV) and other element ratios have been used to establish the weathering sequence of this area since 1820 AD. The weathering is so weak that the element composition change is more sensitive to climate change and autochthonous processes. From 1820 to 1984 AD, there were two drier periods with a wetter interval from 1870 to 1945 AD. After 1984 the weather showed a tendency of becoming wet.
基金supported by the National Natural Science Foundation of China(41371114,41101187)the National Environmental Protection Public Welfare Industry Tar-geted Research Fund(201209034)the Ministry of Education,Humanities and Social Science Projects(10YJCZH053)
文摘Lake area information in the Badain Jaran Desert in 1973, 1990, 2000, and 2010 was obtained by visual interpretation and water index analysis of remote sensing images, based on the spatial and temporal characteristics of lake area changes during 37 years. Results indicated that the nttmber of lakes declined from 94 to 82 and the total surface area was reduced by 3.69 km2 during 1973-2010. The desert lake area reduced by different degrees in different periods, but this occurred most rapidly during 1973-1990. According to the statistics of lake area changes, lake area decreases mainly occurred in the lakes with areas less than 0.2 km2, while the areas of lakes greater than 0.9 km2 only fluctuated. The changes of lake areas were probably due to changes in the quantity of underground water supplies rather than the effects of local climate change or human factors.
基金Supported by National Key Technology R & D Program (2007BAC30B02)Science and Technology Key Project of Qinghai Province (2008-N-146)
文摘[Objective] The aim was to study the characteristics of climate changes in the surrounding area of Qinghai Lake.[Method] Based on the data of temperature,precipitation and sunshine hours from 5 representative meteorological stations in the surrounding area of Qinghai Lake during 1961-2007,the annual,seasonal and decadal variation of meteorological factors were analyzed.[Result] In recent 47 years,temperature showed obvious increase trend in the surrounding area of Qinghai Lake,and annual average temperature increased with the climatic tendency of ≥0.30 ℃/10 a,while annual average minimum temperature increased more significant than annual average temperature and annual average maximum temperature;annual mean precipitation decreased with the climatic tendency of-3.67 mm/10 a,and precipitation in spring and autumn reduced obviously,while precipitation in summer and winter increased slightly;annual sunshine hours also showed decrease trend with the climatic tendency of-1.79 h/10 a,while sunshine hours decreased most obviously in summer,and next came winter,while there was no obvious decrease in spring and autumn.[Conclusion] The study could provide theoretical references for the effective prevention of meteorological disasters in the surrounding area of Qinghai Lake.
文摘Expanding or shrinking of lakes, especially in the closed basin, directly reflects the balance situation of water\|heat regime in the catchment. Fluctuations of the water\|level can be used as an indicator of climatic and environmental changes. Authors have investigated many lakes in West China in recent years, including lakes in the Tibet Plateau and in the arid area in the northwest China. We found that all lakes have been in shrinkage, some of them were changed into swamp and some dried dramatically up, which caused the abrupt change of the lake environment. This change led the grassland to be retrogression and desertification, and made the eco\|environment deterioration in West China.The Xingcuo Lake, in the height of 3425m ASL with 29km\+2 drainage area, located in the Zoige Basin, Northeastern Tibet Plateau, had changed into swamp in the area of 2km\+2 , and the vast area of peripheral marsh changed into grassland by the years of 1990. But the topographic map in the scale of 1/100000 and aerial photography surveyed at the end of 1960’s show clearly that this lake was in the area of 3 3km\+2 and surrounded by vast area of marshland. In the north central part of the Tibet Plateau, the Gourencuo Lake, in the height of 4650m ASL, was in the area of 23 5km\+2 with the average water depth of 1 3m in 1990. Then a dramatic change had been appearing in the recent years. When authors went there again in 1998,they found that the lake dried fully up. A thin salt crystal layer with saturated brine covered the flat central lake floor. This means that at least 30×10 6 m 3 water volume stored in the lake had been lost by the evaporation in 8 years, and many sand dunes had been formed. This abrupt change of lake environment could be recognized as the result of natural process or climate warming because of no human activity there.
文摘The large-scale summer monsoon circulations of south Asia makes a strong impact on precipitation in the area of southwestern China including Qinghai-Tibetan Plateau and Yun-Gui Plateau.however,the monsoon is both spatially and temporally complex and smaller-scale circulations are forced by a variety of local or regional orographic effects,local or regional land-atmosphere or