A map of the average atomic number of lunar rock and soil can be used to differentiate lithology and soil type on the lunar surface.This paper establishes a linear relationship between the average atomic number of lun...A map of the average atomic number of lunar rock and soil can be used to differentiate lithology and soil type on the lunar surface.This paper establishes a linear relationship between the average atomic number of lunar rock or soil and the flux of position annihilation radiation(0.512-Me V gamma-ray) from the lunar surface.The relationship is confirmed by Monte Carlo simulation with data from lunar rock or soil samples collected by Luna(Russia) and Apollo(USA) missions.A map of the average atomic number of the lunar rock and soil on the lunar surface has been derived from the Gamma-Ray Spectrometer data collected by Chang'e-1,an unmanned Chinese lunar-orbiting spacecraft.In the map,the higher average atomic numbers(ZA > 12.5),which are related to different types of basalt,are in the maria region;the highest ZA(13.2) readings are associated with Sinus Aestuum.The middle ZA(~12.1) regions,in the shape of irregular oval rings,are in West Oceanus Procellarum and Mare Frigoris,which seems to be consistent with the distribution of potassium,rare earth elements,and phosphorus as a unique feature on the lunar surface.The lower average atomic numbers(ZA < 11.5)are found to be correlated with the anorthosite on the far side of the Moon.展开更多
China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of th...China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.展开更多
The first Chinese lunar orbiter Chang'E-1 is a successful mission with many fruitful results obtained in various disciplines. The scientific data acquired by the Chang'E-1 payloads can benefit studies of the l...The first Chinese lunar orbiter Chang'E-1 is a successful mission with many fruitful results obtained in various disciplines. The scientific data acquired by the Chang'E-1 payloads can benefit studies of the lunar origin and evolution, as well as other relevant research areas, after careful validation of the data. Among the new results, the Chang'E-1 selenodetic products are continually uncovering characteristics of the lunar surface, undersurface and inner structure. Successful lunar orbiters such as the Clementine, Lunar Prospector, KAGUYA/SELENE, Chang'E-1, Lunar Reconnaissance Orbiter and GRAIL have been revealing, with increasing clarity, global selenodetic characteristics with state-of-the-art fine resolution and high precision. In particular, the Chang'E-1 plays an important distinctive role in selenodetic exploration through enhancing lunar topography and gravity models. The gravity model has been successfully improved with a factor of two after applying the Chang'E-1 long-wavelength tracking data. Using the new models, some medium-scale lunar surface characteristics such as basins and volcanoes have been identified. Furthermore, the old mascon basins of Bouguer, gravity anomaly and craters have been discovered with the Chang'E-1 selenodetic data.展开更多
Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level o...Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.展开更多
The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and sc...The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and scientific research. In this paper, the acquisition, characteristics, and data quality of Chang'E-1 CCD image data are described in detail. Also described are the methodology and procedure of data processing. According to rule of planetary cartography, the image data have been processed, geometrically corrected, and then mosaicked and merged in a scale of 1:2.5 million. The results of data processing and charting show that the image data of Chang'E-1 CCD and their geometric precision meet the demand of charting a map in the scale of 1:2.5 million. The relative geometric positioning precision of the global image is better than 240 m, and the absolute geometric positioning precision is slightly better than that of the ULCN2005 and Clementine lunar basemap (V2.0). The plane positioning precision is approximately 100-1500 m. This global image proves to be the best global image of the Moon so far in terms of space coverage, image quality, and positioning precision.展开更多
The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" th...The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" the Moon. The first Chinese lunar probe, Chang'E-1, which was successfully launched on October 24th, 2007 at Xichang Satellite Launch Center, and guided to crash on the Moon on March 1st, 2009, at 52.36°E, 1.50°S, in the north of Mare Fecunditatis, is the first step towards the "orbiting around" stage. The Chang'E-1 mission lasted 495 days, exceeding the expected life-span by about four months. A total of 1.37 TB raw data was received from Chang'E-1. It was then processed into 4 TB scientific data products at various levels. Many scientific results have been obtained by analyzing these data, including especially the "global lunar image from the first Chinese lunar explora- tion mission". All scientific goals of Chang'E-1 have been achieved. It provides much useful materials for further advances of lunar sciences and planetary chemistry. Meanwhile, these results will serve as a firm basis for future Chinese lunar missions.展开更多
The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December...The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang'E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang'E-1 reveals a new lowest point, clearly lower than that of SELENE.展开更多
More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spher...More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spherical harmonic expansion of the lunar radii, is designated as Chang’E-1 Lunar Topography Model s01 (CLTM-s01). This topographic field, referenced to a mean radius of 1738 km, has an absolute vertical accuracy of approximately 31 m and a spatial resolution of 0.25° (~7.5 km). This new lunar topographic model has greatly improved previous models in spatial coverage, accuracy and spatial resolution, and also shows the polar regions with the altimeter results for the first time. From CLTM-s01, the mean, equatorial, and polar radii of the Moon are 1737103, 1737646, and 1735843 m, respectively. In the lunar-fixed coordinate system, this model shows a COM/COF offset to be (?1.777, ?0.730, 0.237) km along the x, y, and z directions, respectively. All the basic lunar shape parameters derived from CLTM-s01 are in agreement with the results of Clementine GLTM2, but CLTM-s01 offers higher accuracy and reliability due to its better global samplings.展开更多
The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data o...The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.展开更多
This article intends to solve the matching problem of 2C level lunar images by Chang’E-1(CE-1)lunar probe satellite.A line-scanner image matching method is proposed which represents deformation by the quadric functio...This article intends to solve the matching problem of 2C level lunar images by Chang’E-1(CE-1)lunar probe satellite.A line-scanner image matching method is proposed which represents deformation by the quadric function along the camera motion direction and bases on the deformation model for a relief terrain’s imaging on sensors of the satellite borne three-line scanner camera.A precise matching is carried out for the normal view,the frontward view,and the backward view images of the CE-1 by combining the proposed method with the standard correlation method.A super-resolution(SR)reconstruction algorithm based on the wavelet interpolation of non-uniformly sampled data is also adopted to realize SR reconstruction of CE-1 lunar images,which adds the recognizable targets and explores CE-1 lunar images to the full.展开更多
Lunar geodetic parameters, which play an important role in lunar exploration, can be calculated from the gravity and topography data. With the CE-1 altimetry data and LP gravity model, we calculate such geodetic param...Lunar geodetic parameters, which play an important role in lunar exploration, can be calculated from the gravity and topography data. With the CE-1 altimetry data and LP gravity model, we calculate such geodetic parameters as the principle moment of inertia, the principle inertia axes, equatorial radius, polar radius, mean radius, flattening and offset between center of mass and center of figure (DCOM-COF). According to the CE-1 altimetry data and the above geodetic parameters, a tri-axial ellipsoid (CE-1-LAM-GEO) and a tri-axial level ellipsoid (CE-1-LAM-LEVEL) are calculated individually, providing mass center and figure center offset (DCOM-COF) and parameters more reliable in direction and magnitude.展开更多
Flight schemes for the CHANG'E-5T1 extended mission are investigated in this paper.In the flight scheme and trajectory design, the remaining propellant of the CHANG'E-5T1 mission is utilized. The CHANG'E-5T1 missio...Flight schemes for the CHANG'E-5T1 extended mission are investigated in this paper.In the flight scheme and trajectory design, the remaining propellant of the CHANG'E-5T1 mission is utilized. The CHANG'E-5T1 mission is firstly introduced with feasible flight goals derived based on the terminal trajectory and satellite status. The flight schemes are designed to include a lunar return and the libration points in the Sun-Earth/Moon and Earth-Moon systems, with an emphasis on the Earth-Moon triangle libration point thus far unexplored. Secondly, three schemes are proposed for the CHANG'E-5T1 extended mission with different flight goals. The direct libration point orbit transfer and injection method is adopted to solve the issue in the transfer trajectory design.Furthermore, an innovative concept is proposed to transfer from the Earth-Moon collinear libration point to the triangle point using the Sun-Earth/Moon libration point. Finally, the merits and drawbacks of the three schemes are discussed in terms of flight time, control energy and frequency, flight distance, and goal value. As a result, the scheme including a lunar return and the Earth-Moon L2 libration point is selected for the CHANG'E-5T1 extended mission. A flight to the Earth-Moon libration point is achieved, replicating the achievement of the ARTEMIS mission.展开更多
In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1 (CE-1). The ob...In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1 (CE-1). The obtained lunar Bouguer gravity anomaly (BGA) reveals density irregularities of the interior mass. BGA is important in characterizing the mascon basins. According to the BGA of the Moon,the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon,and the feature of BGA in the basin implies the impacting direction. Further,the mascon basins seem to be classified into two types,Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust,which are associated with the basalt deposits. The other type,Type Plain,includes mascon basins whose major dense materials may be located deep at the litho-sphere,corresponding to the uplifted mantle.展开更多
Up to now, many lunar explorations concluded their scientific mission through the impact on the lunar surface. The prediction and positioning of impact sites are based on the extrapolated orbiting data together with t...Up to now, many lunar explorations concluded their scientific mission through the impact on the lunar surface. The prediction and positioning of impact sites are based on the extrapolated orbiting data together with the real time orbiting data and observations from ground based telescope provided by TT & C System. As most lunar missions carded cameras onboard, a new method of positioning of CE-1 impact site is put forward. It is based on the CCD image data photographed during the con- trolled impact and the existing lunar terrain data. Test results from this new method also validate the published impact site po sition.展开更多
Previous analyses showed a clear asymmetry in the topography,geological material distribution,and crustal thickness between the nearside and farside of the Moon. Lunar detecting data,such as topography and gravity,hav...Previous analyses showed a clear asymmetry in the topography,geological material distribution,and crustal thickness between the nearside and farside of the Moon. Lunar detecting data,such as topography and gravity,have made it possible to interpret this hemisphere dichotomy. The high-resolution lunar topographic model CLTM-s01 has revealed that there still exist four unknown features,namely,quasi-impact basin Sternfeld-Lewis (20°S,232°E),confirmed impact basin Fitzgerald-Jackson (25°N,191°E),crater Wugang (13°N,189°E) and volcanic deposited highland Yutu (14°N,308°E). Furthermore,we analyzed and identified about eleven large-scale impact basins that have been proposed since 1994,and classified them according to their circular characteristics.展开更多
There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbite...There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbiter, Lunar Reconnaissance Orbiter (LRO), Kaguya and Chang’e-1 missions, 5 representative large Copernican craters on various terrains of the lunar surface are chosen to study the origin of the pit chains in the crater floor. The morphology and distribution characteristic of the pit chains are referred by the high resolution images in this research. It is suggested that it is the magma activities from the subsurface magma layer combining with the existence of fractures and faults under the crater floor that leaded the formation of the pit chains. The model is further verified and discussed using the regolith thickness data in the crater floor. Our model suggests that the pit chains are still developing in the floor of the Copernican craters and the Moon may not be totally cold. Finally, the model limitation and potential future work are discussed based on available data.展开更多
Many of the world’s powerful and wealthy nations,including China,have devoted both large amounts of funding and considerable promotion to lunar research and exploration.The launch of Chinese Chang’e-1 satellite and ...Many of the world’s powerful and wealthy nations,including China,have devoted both large amounts of funding and considerable promotion to lunar research and exploration.The launch of Chinese Chang’e-1 satellite and the construction of the scientific observation data platform created a favourable opportunity for research into the lunar geometrical,physical and chemical environment.Based on this background,a Wide Area Network(WAN)based virtual lunar environment was constructed for observation data sharing and further exploration.The systematic architecture and framework were introduced and then strategies of mass data(e.g.lunar digital elevation model,lunar digital orthophoto map and typical thematic lunar data)organisation,integration,management and scheduling were then set up to achieve the 3D visualisation of typical lunar geomorphic features.Furthermore,the integration method of 3D lunar data and the process model of impact craters were studied;thus,the whole lunar and celestial collision process could be dynamically simulated.The results indicate that the WAN-based virtual lunar platform can be used effectively for public information sharing,scientific exploration and further to promote the development of deep space exploration in China.展开更多
基金supported by the National High-tech R&D Program(No.2017YFC0602100)the Natural Science Foundation of China(No.41374136)
文摘A map of the average atomic number of lunar rock and soil can be used to differentiate lithology and soil type on the lunar surface.This paper establishes a linear relationship between the average atomic number of lunar rock or soil and the flux of position annihilation radiation(0.512-Me V gamma-ray) from the lunar surface.The relationship is confirmed by Monte Carlo simulation with data from lunar rock or soil samples collected by Luna(Russia) and Apollo(USA) missions.A map of the average atomic number of the lunar rock and soil on the lunar surface has been derived from the Gamma-Ray Spectrometer data collected by Chang'e-1,an unmanned Chinese lunar-orbiting spacecraft.In the map,the higher average atomic numbers(ZA > 12.5),which are related to different types of basalt,are in the maria region;the highest ZA(13.2) readings are associated with Sinus Aestuum.The middle ZA(~12.1) regions,in the shape of irregular oval rings,are in West Oceanus Procellarum and Mare Frigoris,which seems to be consistent with the distribution of potassium,rare earth elements,and phosphorus as a unique feature on the lunar surface.The lower average atomic numbers(ZA < 11.5)are found to be correlated with the anorthosite on the far side of the Moon.
文摘China has successfully launched six lunar probes so far.From Chang'E-1 to Chang'E-4,they completed the circling,landing and roving exploration,of which Chang'E-4 was the first landing on the far side of the Moon in human history.Chang'E-5 was launched in December 2020,bringing back 1731 g of lunar soil samples.Through the detailed analysis of the samples,the scientists understand the history of late lunar volcanism,specifically extending lunar volcanism by about 800 million to 1 billion years,and proposed possible mechanisms.In addition,there are many new understandings of space weathering such as meteorite impacts and solar wind radiation on the Moon.China's first Mars exploration mission Tianwen-1 was successfully launched in July 2021.Through the study of scientific data,a number of important scientific achievements have been made in the topography,water environment and shallow surface structure of Mars.This paper introduces the main scientific achievements of Chang'E-4,Chang'E-5 and Tianwen-1 in the past two years,excluding technical and engineering contents.Due to the large number of articles involved,this paper only introduces part of the results.
基金supported by the National Natural Science Foundation of China (Grant No.10973031)the National High Technology Research and Development Program of China (Grant No.2010AA122206)
文摘The first Chinese lunar orbiter Chang'E-1 is a successful mission with many fruitful results obtained in various disciplines. The scientific data acquired by the Chang'E-1 payloads can benefit studies of the lunar origin and evolution, as well as other relevant research areas, after careful validation of the data. Among the new results, the Chang'E-1 selenodetic products are continually uncovering characteristics of the lunar surface, undersurface and inner structure. Successful lunar orbiters such as the Clementine, Lunar Prospector, KAGUYA/SELENE, Chang'E-1, Lunar Reconnaissance Orbiter and GRAIL have been revealing, with increasing clarity, global selenodetic characteristics with state-of-the-art fine resolution and high precision. In particular, the Chang'E-1 plays an important distinctive role in selenodetic exploration through enhancing lunar topography and gravity models. The gravity model has been successfully improved with a factor of two after applying the Chang'E-1 long-wavelength tracking data. Using the new models, some medium-scale lunar surface characteristics such as basins and volcanoes have been identified. Furthermore, the old mascon basins of Bouguer, gravity anomaly and craters have been discovered with the Chang'E-1 selenodetic data.
基金jointly supported by a grant from the National Natural Science Foundation of China(No.41490634)the National Key Basic Research Special Foundation of China(No.2015FY210500)
文摘Spectra are sensitive in detecting main minerals on the lunar surface from visible light to infrared light. Since spectral characteristics of minerals are closely related to their compositions and the maturity level of soil on the Moon, studying the compositions and distribution of elements and minerals on the lunar surface can help to understand the evolution of the Moon through remote sensing technology. The correlation between the spectral characteristics of Chang'e-1 interference imaging spectrometry(IIM) reflectance images and the mineral contents of LSCC(Lunar Soil Characterization Consortium) lunar surface mineral samples was discussed and the spatial distributions of Fe O and Al_2O_3 contained in both pyroxene and plagioclase on LQ-4 were studied using the improved angle parameter method, MNF, and band ratio statistics. A comparison of the mapping results of the optical models by Lucey, Shkuractov and other researchers on Clementine and the gamma ray spectrometry data shows that the content error is within 0.6% for lunar mare areas and close to 1% for the highland areas. The tectonic framework on the lunar surface was also investigated. And based on integrated analysis of previous findings on topography of the lunar surface, Chang'e LAM, CCD and LOLA images and the gravity anomalies data(Clementine GLGM-2), the tectonic unit subdivision was established for LQ-4, the idea of subdividing the lunar tectonic units was proposed, and this will provide a good foundation for studying the lunar tectonic evolution.
文摘The global lunar image of the first phase of Chinese Lunar Exploration Program is the first image that covered all over the surface of the Moon. It will serve as a critical foundation for succeeding exploration and scientific research. In this paper, the acquisition, characteristics, and data quality of Chang'E-1 CCD image data are described in detail. Also described are the methodology and procedure of data processing. According to rule of planetary cartography, the image data have been processed, geometrically corrected, and then mosaicked and merged in a scale of 1:2.5 million. The results of data processing and charting show that the image data of Chang'E-1 CCD and their geometric precision meet the demand of charting a map in the scale of 1:2.5 million. The relative geometric positioning precision of the global image is better than 240 m, and the absolute geometric positioning precision is slightly better than that of the ULCN2005 and Clementine lunar basemap (V2.0). The plane positioning precision is approximately 100-1500 m. This global image proves to be the best global image of the Moon so far in terms of space coverage, image quality, and positioning precision.
文摘The strategic plan for the development of the unmanned Chinese Lunar Exploration Program is characterized by three distinct stages: "orbiting around", "landing on" and "returning from" the Moon. The first Chinese lunar probe, Chang'E-1, which was successfully launched on October 24th, 2007 at Xichang Satellite Launch Center, and guided to crash on the Moon on March 1st, 2009, at 52.36°E, 1.50°S, in the north of Mare Fecunditatis, is the first step towards the "orbiting around" stage. The Chang'E-1 mission lasted 495 days, exceeding the expected life-span by about four months. A total of 1.37 TB raw data was received from Chang'E-1. It was then processed into 4 TB scientific data products at various levels. Many scientific results have been obtained by analyzing these data, including especially the "global lunar image from the first Chinese lunar explora- tion mission". All scientific goals of Chang'E-1 have been achieved. It provides much useful materials for further advances of lunar sciences and planetary chemistry. Meanwhile, these results will serve as a firm basis for future Chinese lunar missions.
文摘The Laser AltiMeter (LAM), as one of the main payloads of Chang'E-1 probe, is used to measure the topography of the lunar surface. It performed the first measurement at 02:22 on November 28th, 2007. Up to December 4th 2008, the total number of measurements was approximately 9.12 million, covering the whole surface of the Moon. Using the LAM data, we constructed a global lunar Digtal Elevation Model (DEM) with 3 km spatial resolution. The model shows pronounced morphological characteristics, legible and vivid details of the lunar surface. The plane positioning accuracy of the DEM is 445 m (1σ), and the vertical accuracy is 60 m (1σ). From this DEM model, we measured the full range of the altitude difference on the lunar sur-face, which is about 19.807 km. The highest point is 10.629 km high, on a peak between crater Korolev and crater Dirichlet-Jackson at (158.656°W, 5.441°N) and the lowest point is -9.178 km in height, inside crater Antoniadi (172.413°W, 70.368°S) in the South Pole-Aitken Basin. By comparison, the DEM model of Chang'E-1 is better than the USA ULCN2005 in accuracy and resolution and is probably identical to the DEM of Japan SELENE, but the DEM of Chang'E-1 reveals a new lowest point, clearly lower than that of SELENE.
基金Supported by the National Natural Science Foundation of China (Grant Nos 2008AA12A209 and 2008AA12A210)supported by Chang'E-1 monitoring and control systems, scientific applications system and the satellite systemssupported by the knowledge innovation project the "Hun-dred Excellent Project" of Chinese Academy of Sciences
文摘More than 3 million range measurements from the Chang’E-1 Laser Altimeter have been used to produce a global topographic model of the Moon with improved accuracy. Our topographic model, a 360th degree and order spherical harmonic expansion of the lunar radii, is designated as Chang’E-1 Lunar Topography Model s01 (CLTM-s01). This topographic field, referenced to a mean radius of 1738 km, has an absolute vertical accuracy of approximately 31 m and a spatial resolution of 0.25° (~7.5 km). This new lunar topographic model has greatly improved previous models in spatial coverage, accuracy and spatial resolution, and also shows the polar regions with the altimeter results for the first time. From CLTM-s01, the mean, equatorial, and polar radii of the Moon are 1737103, 1737646, and 1735843 m, respectively. In the lunar-fixed coordinate system, this model shows a COM/COF offset to be (?1.777, ?0.730, 0.237) km along the x, y, and z directions, respectively. All the basic lunar shape parameters derived from CLTM-s01 are in agreement with the results of Clementine GLTM2, but CLTM-s01 offers higher accuracy and reliability due to its better global samplings.
基金supported by the National Natural Science Foundation of China (Grant Nos. 40871177 and 41171332)the Knowledge Innovation Project of the Institute of Geographic and Natural Resources Research, the Chinese Academy of Sci-ences (Grant No. 201001005)
文摘The distribution characteristics of the impact craters can provide a large amount of information on impact history and the lunar evolution process. In this research, based on the digital elevation model (DEM) data originating from Change'E-1 CCD stereo camera, three automatic extraction methods for the impact craters are implemented in two research areas: direct extraction from flooded DEM data (the Flooded method), object-oriented extraction from DEM data by using ENVI ZOOM function (the Object-Oriented method) and novel object-oriented extraction from flooded DEM data (the Flooded Object-Oriented method). Accuracy assessment, extracted degree computation, cumulative frequency analysis, shape and age analysis of the extracted craters combined display the following results. (1) The Flooded Object-Oriented method yields better accuracy than the other two methods in the two research areas; the extraction result of the Flooded method offers the similar accuracy to that of the Object-Oriented method. (2) The cumulative frequency curves for the extracted craters and the confirmed craters share a simi- lar change trajectory. (3) The number of the impact craters extracted by the three methods in the Imbrian period is the largest and is of various types; as to their age earlier than lmbrain, it is difficult to extract because they could have been destroyed.
基金Supported by the"Eleventh five"Obligatory Budget of People’s Liberation Army(PLA)(Grant No.513150801)
文摘This article intends to solve the matching problem of 2C level lunar images by Chang’E-1(CE-1)lunar probe satellite.A line-scanner image matching method is proposed which represents deformation by the quadric function along the camera motion direction and bases on the deformation model for a relief terrain’s imaging on sensors of the satellite borne three-line scanner camera.A precise matching is carried out for the normal view,the frontward view,and the backward view images of the CE-1 by combining the proposed method with the standard correlation method.A super-resolution(SR)reconstruction algorithm based on the wavelet interpolation of non-uniformly sampled data is also adopted to realize SR reconstruction of CE-1 lunar images,which adds the recognizable targets and explores CE-1 lunar images to the full.
文摘Lunar geodetic parameters, which play an important role in lunar exploration, can be calculated from the gravity and topography data. With the CE-1 altimetry data and LP gravity model, we calculate such geodetic parameters as the principle moment of inertia, the principle inertia axes, equatorial radius, polar radius, mean radius, flattening and offset between center of mass and center of figure (DCOM-COF). According to the CE-1 altimetry data and the above geodetic parameters, a tri-axial ellipsoid (CE-1-LAM-GEO) and a tri-axial level ellipsoid (CE-1-LAM-LEVEL) are calculated individually, providing mass center and figure center offset (DCOM-COF) and parameters more reliable in direction and magnitude.
基金supports of this study by the National Natural Science Foundation of China (Nos.11773004,61573049,11303001,61571032)the Major Special Project of the National Lunar Exploration of China
文摘Flight schemes for the CHANG'E-5T1 extended mission are investigated in this paper.In the flight scheme and trajectory design, the remaining propellant of the CHANG'E-5T1 mission is utilized. The CHANG'E-5T1 mission is firstly introduced with feasible flight goals derived based on the terminal trajectory and satellite status. The flight schemes are designed to include a lunar return and the libration points in the Sun-Earth/Moon and Earth-Moon systems, with an emphasis on the Earth-Moon triangle libration point thus far unexplored. Secondly, three schemes are proposed for the CHANG'E-5T1 extended mission with different flight goals. The direct libration point orbit transfer and injection method is adopted to solve the issue in the transfer trajectory design.Furthermore, an innovative concept is proposed to transfer from the Earth-Moon collinear libration point to the triangle point using the Sun-Earth/Moon libration point. Finally, the merits and drawbacks of the three schemes are discussed in terms of flight time, control energy and frequency, flight distance, and goal value. As a result, the scheme including a lunar return and the Earth-Moon L2 libration point is selected for the CHANG'E-5T1 extended mission. A flight to the Earth-Moon libration point is achieved, replicating the achievement of the ARTEMIS mission.
基金Supported by the National Natural Science Foundation of China (Grant No. 40774060)
文摘In this study,the terrain correction for lunar free-air gravity anomaly (FAGA) is calculated in spherical coordinates based on the global topography data detected by the laser altimeter on Chang'E-1 (CE-1). The obtained lunar Bouguer gravity anomaly (BGA) reveals density irregularities of the interior mass. BGA is important in characterizing the mascon basins. According to the BGA of the Moon,the South Pole-Aitken (SPA) basin is considered the largest mascon basin on the Moon,and the feature of BGA in the basin implies the impacting direction. Further,the mascon basins seem to be classified into two types,Type Highland and Type Plain. For the mascon basins of Type Highland the dense materials mainly come from the shallow crust,which are associated with the basalt deposits. The other type,Type Plain,includes mascon basins whose major dense materials may be located deep at the litho-sphere,corresponding to the uplifted mantle.
基金supported by National Natural Science Foundation of China (Grant No. 10903017)National High Technology Research and Development Program of China (Grant No. 2010AA122202)
文摘Up to now, many lunar explorations concluded their scientific mission through the impact on the lunar surface. The prediction and positioning of impact sites are based on the extrapolated orbiting data together with the real time orbiting data and observations from ground based telescope provided by TT & C System. As most lunar missions carded cameras onboard, a new method of positioning of CE-1 impact site is put forward. It is based on the CCD image data photographed during the con- trolled impact and the existing lunar terrain data. Test results from this new method also validate the published impact site po sition.
基金Supported by the National Natural Science Foundation of China (Grant Nos. 10973031, 2008AA12A209 and 2008AA12A210)the CAS Key Research Program (Grant No. KJCX2-YW-T13-2) Recommended by ZHAO Ming
文摘Previous analyses showed a clear asymmetry in the topography,geological material distribution,and crustal thickness between the nearside and farside of the Moon. Lunar detecting data,such as topography and gravity,have made it possible to interpret this hemisphere dichotomy. The high-resolution lunar topographic model CLTM-s01 has revealed that there still exist four unknown features,namely,quasi-impact basin Sternfeld-Lewis (20°S,232°E),confirmed impact basin Fitzgerald-Jackson (25°N,191°E),crater Wugang (13°N,189°E) and volcanic deposited highland Yutu (14°N,308°E). Furthermore,we analyzed and identified about eleven large-scale impact basins that have been proposed since 1994,and classified them according to their circular characteristics.
文摘There are small pit chains in the floor of lunar Copernican craters. They are usually so small in scale that there are few lunar spacecrafts to detect their detailed morphology. Combining camera data from Lunar Orbiter, Lunar Reconnaissance Orbiter (LRO), Kaguya and Chang’e-1 missions, 5 representative large Copernican craters on various terrains of the lunar surface are chosen to study the origin of the pit chains in the crater floor. The morphology and distribution characteristic of the pit chains are referred by the high resolution images in this research. It is suggested that it is the magma activities from the subsurface magma layer combining with the existence of fractures and faults under the crater floor that leaded the formation of the pit chains. The model is further verified and discussed using the regolith thickness data in the crater floor. Our model suggests that the pit chains are still developing in the floor of the Copernican craters and the Moon may not be totally cold. Finally, the model limitation and potential future work are discussed based on available data.
基金The work described in this article was supported by the Key Program of National Natural Science Foundation of China(grant no.40730527)the National High Technology Research and Development Program of China(key‘863’no.2010AA122202)+1 种基金the National Natural Science Foundation of China(grant no.41001223)the Direct Grant of The Chinese University of Hong Kong(grant no.2021064).
文摘Many of the world’s powerful and wealthy nations,including China,have devoted both large amounts of funding and considerable promotion to lunar research and exploration.The launch of Chinese Chang’e-1 satellite and the construction of the scientific observation data platform created a favourable opportunity for research into the lunar geometrical,physical and chemical environment.Based on this background,a Wide Area Network(WAN)based virtual lunar environment was constructed for observation data sharing and further exploration.The systematic architecture and framework were introduced and then strategies of mass data(e.g.lunar digital elevation model,lunar digital orthophoto map and typical thematic lunar data)organisation,integration,management and scheduling were then set up to achieve the 3D visualisation of typical lunar geomorphic features.Furthermore,the integration method of 3D lunar data and the process model of impact craters were studied;thus,the whole lunar and celestial collision process could be dynamically simulated.The results indicate that the WAN-based virtual lunar platform can be used effectively for public information sharing,scientific exploration and further to promote the development of deep space exploration in China.