期刊文献+
共找到1,857篇文章
< 1 2 93 >
每页显示 20 50 100
Hydrologic Response to Future Climate Change in the Dulong-Irra-waddy River Basin Based on Coupled Model Intercomparison Project 6
1
作者 XU Ziyue MA Kai +1 位作者 YUAN Xu HE Daming 《Chinese Geographical Science》 SCIE CSCD 2024年第2期294-310,共17页
Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role... Within the context of the Belt and Road Initiative(BRI)and the China-Myanmar Economic Corridor(CMEC),the Dulong-Ir-rawaddy(Ayeyarwady)River,an international river among China,India and Myanmar,plays a significant role as both a valuable hydro-power resource and an essential ecological passageway.However,the water resources and security exhibit a high degree of vulnerabil-ity to climate change impacts.This research evaluates climate impacts on the hydrology of the Dulong-Irrawaddy River Basin(DIRB)by using a physical-based hydrologic model.We crafted future climate scenarios using the three latest global climate models(GCMs)from Coupled Model Intercomparison Project 6(CMIP6)under two shared socioeconomic pathways(SSP2-4.5 and SSP5-8.5)for the near(2025-2049),mid(2050-2074),and far future(2075-2099).The regional model using MIKE SHE based on historical hydrologic processes was developed to further project future streamflow,demonstrating reliable performance in streamflow simulations with a val-idation Nash-Sutcliffe Efficiency(NSE)of 0.72.Results showed that climate change projections showed increases in the annual precip-itation and potential evapotranspiration(PET),with precipitation increasing by 11.3%and 26.1%,and PET increasing by 3.2%and 4.9%,respectively,by the end of the century under SSP2-4.5 and SSP5-8.5.These changes are projected to result in increased annual streamflow at all stations,notably at the basin’s outlet(Pyay station)compared to the baseline period(with an increase of 16.1%and 37.0%at the end of the 21st century under SSP2-4.5 and SSP5-8.5,respectively).Seasonal analysis for Pyay station forecasts an in-crease in dry-season streamflow by 31.3%-48.9%and 22.5%-76.3%under SSP2-4.5 and SSP5-8.5,respectively,and an increase in wet-season streamflow by 5.8%-12.6%and 2.8%-33.3%,respectively.Moreover,the magnitude and frequency of flood events are pre-dicted to escalate,potentially impacting hydropower production and food security significantly.This research outlines the hydrological response to future climate change during the 21st century and offers a scientific basis for the water resource management strategies by decision-makers. 展开更多
关键词 climate change hydrologic response Coupled Model Intercomparison project 6(CMIP6) MIKe SHe(Système Hydrologique europeén) Dulong-Irrawaddy River Basin
下载PDF
Detection,Causes and Projection of Climate Change over China:An Overview of Recent Progress 被引量:102
2
作者 丁一汇 任国玉 +4 位作者 赵宗慈 徐影 罗勇 李巧萍 张锦 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2007年第6期954-971,共18页
This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global aver... This article summarizes the main results and findings of studies conducted by Chinese scientists in the past five years. It is shown that observed climate change in China bears a strong similarity with the global average. The country-averaged annual mean surface air temperature has increased by 1.1℃ over the past 50 years and 0.5-0.8℃ over the past 100 years, slightly higher than the global temperature increase for the same periods. Northern China and winter have experienced the greatest increases in surface air temperature. Although no significant trend has been found in country-averaged annual precipitation, interdecadal variability and obvious trends on regional scales are detectable, with northwestern China and the mid and lower Yangtze River basin having undergone an obvious increase, and North China a severe drought. Some analyses show that frequency and magnitude of extreme weather and climate events have also undergone significant changes in the past 50 years or so. Studies of the causes of regional climate change through the use of climate models and consideration of various forcings, show that the warming of the last 50 years could possibly be attributed to an increased atmospheric concentration of greenhouse gases, while the temperature change of the first half of the 20th century may be due to solar activity, volcanic eruptions and sea surface temperature change. A significant decline in sunshine duration and solar radiation at the surface in eastern China has been attributed to the increased emission of pollutants. Projections of future climate by models of the NCC (National Climate Center, China Meteorological Administration) and the IAP (Institute of Atmospheric Physics, Chinese Academy of Sciences), as well as 40 models developed overseas, indicate a potential significant warming in China in the 21st century, with the largest warming set to occur in winter months and in northern China. Under varied emission scenarios, the country-averaged annual mean temperature is projected to increase by 1.5 2.1℃ by 2020, 2.3 3.3℃ by 2050, and by 3.9-6.0℃ by 2100, in comparison to the 30-year average of 1961-1990. Most models project a 10% 12% increase in annual precipitation in China by 2100, with the trend being particularly evident in Northeast and Northwest China, but with parts of central China probably undergoing a drying trend. Large uncertainty exists in the projection of precipitation, and further studies are needed. Furthermore, anthropogenic climate change will probably lead to a weaker winter monsoon and a stronger summer monsoon in eastern Asia. 展开更多
关键词 climate change China DeTeCTION CAUSeS climate models projectION
下载PDF
Changes in Mean and Extreme Temperature and Precipitation over the Arid Region of Northwestern China: Observation and Projection 被引量:47
3
作者 Yujie WANG Botao ZHOU +3 位作者 Dahe QIN Jia WU Rong GAO Lianchun SONG 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2017年第3期289-305,共17页
This paper reports a comprehensive study on the observed and projected spatiotemporal changes in mean and extreme climate over the arid region of northwestern China, based on gridded observation data and CMIP5 simulat... This paper reports a comprehensive study on the observed and projected spatiotemporal changes in mean and extreme climate over the arid region of northwestern China, based on gridded observation data and CMIP5 simulations under the RCP4.5 and RCP8.5 scenarios. The observational results reveal an increase in annual mean temperature since 1961, largely attributable to the increase in minimum temperature. The annual mean precipitation also exhibits a significant increasing tendency. The precipitation amount in the most recent decade was greater than in any preceding decade since 1961. Seasonally, the greatest increase in temperature and precipitation appears in winter and in summer, respectively. Widespread significant changes in temperature-related extremes are consistent with warming, with decreases in cold extremes and increases in warm extremes. The warming of the coldest night is greater than that of the warmest day, and changes in cold and warm nights are more evident than for cold and warm days. Extreme precipitation and wet days exhibit an increasing trend, and the maximum number of consecutive dry days shows a tendency toward shorter duration. Multi-model ensemble mean projections indicate an overall continual increase in temperature and precipitation during the 21 st century. Decreases in cold extremes, increases in warm extremes, intensification of extreme precipitation, increases in wet days, and decreases in consecutive dry days, are expected under both emissions scenarios, with larger changes corresponding to stronger radiative forcing. 展开更多
关键词 climate change arid region OBSeRVATION CMIP5 projection
下载PDF
Projected Potential Vegetation Change in China under the SRES A2 and B2 Scenarios 被引量:11
4
作者 姜大膀 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2008年第1期126-138,共13页
The ability of seven global coupled ocean-atmosphere models to reproduce East Asian monthly surface temperature and precipitation climatologies during 1961 1990 is evaluated. January and July climate differences durin... The ability of seven global coupled ocean-atmosphere models to reproduce East Asian monthly surface temperature and precipitation climatologies during 1961 1990 is evaluated. January and July climate differences during the 2050s and 2090s relative to 1961-1990 projected by the seven-model ensemble under the Special Report on Emission Scenarios (SRES) A2 and B2 scenarios are then briefly discussed. These projections, together with the corresponding atmospheric CO2 concentrations under the SRES A2 and B2 scenarios, are subsequently used to drive the biome model BIOME3 to simulate potential vegetation distribution in China during the 2050s and 2090s. It is revealed that potential vegetation belts during the 2050s shift northward greatly in central and eastern China compared to those during 1961-1990. In contrast, potential vegetation change is slight in western China on the whole. The spatial pattern of potential vegetation during the 2090s is generally similar to that during the 2050s, but the range of potential vegetation change against 1961 1990 is more extensive during the 2090s than the 2050s, particularly in western China. Additionally, there exists model-dependent uncertainty of potential vegetation change under the SRES A2 scenario during the 2090s, which is due to the scatter of projected climate change by the models. The projected change in potential vegetation under the SRES A2 scenario during the 2090s is attributable to surface temperature change south of 35°N and to the joint changes of surface temperature, precipitation, and atmospheric CO2 concentration north of 35°N. 展开更多
关键词 climate change potential vegetation projectION UNCeRTAINTY
下载PDF
Asymmetry of Surface Climate Change under RCP2.6 Projections from the CMIP5 Models 被引量:3
5
作者 辛晓歌 程彦杰 +2 位作者 汪方 吴统文 张洁 《Advances in Atmospheric Sciences》 SCIE CAS CSCD 2013年第3期796-805,共10页
The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative con- centration... The multi-model ensemble (MME) of 20 models from the Coupled Model Intercomparison Project Phase Five (CMIP5) was used to analyze surface climate change in the 21st century under the representative con- centration pathway RCP2.6, to reflect emission mitigation efforts. The maximum increase of surface air temperature (SAT) is 1.86℃ relative to the pre-industrial level, achieving the target to limit the global warming to 2℃. Associated with the "increase-peak-decline" greenhouse gases (GHGs) concentration path- way of RCP2.6, the global mean SAT of MME shows opposite trends during two time periods: warming during 2006-55 and cooling during 2056-2100. Our results indicate that spatial distribution of the linear trend of SAT during the warming period exhibited asymmetrical features compared to that during the cool- ing period. The warming during 2006-55 is distributed globally, while the cooling during 2056-2100 mainly occurred in the NH, the South Indian Ocean, and the tropical South Atlantic Ocean. Different dominant roles of heat flux in the two time periods partly explain the asymmetry. During the warming period, the latent heat flux and shortwave radiation both play major roles in heating the surface air. During the cooling period, the increase of net longwave radiation partly explains the cooling in the tropics and subtropics, which is associated with the decrease of total cloud amount. The decrease of the shortwave radiation accounts for the prominent cooling in the high latitudes of the NH. The surface sensible heat flux, latent heat flux, and shortwave radiation collectively contribute to the especial warming phenomenon in the high-latitude of the SH during the cooling period. 展开更多
关键词 climate models climate change projectION CMIP5 RCP2.6
下载PDF
Land Cover Changes and Drivers in the Water Source Area of the Middle Route of the South-to-North Water Diversion Project in China from 2000 to 2015 被引量:4
6
作者 GAO Wenwen ZENG Yuan +2 位作者 ZHAO Dan WU Bingfang REN Zhiyuan 《Chinese Geographical Science》 SCIE CSCD 2020年第1期115-126,共12页
The Middle Route of the South-to-North Water Diversion Project(MR-SNWDP)in China,with construction beginning in 2003,diverts water from Danjiangkou Reservoir to North China for residential,agriculture and industrial u... The Middle Route of the South-to-North Water Diversion Project(MR-SNWDP)in China,with construction beginning in 2003,diverts water from Danjiangkou Reservoir to North China for residential,agriculture and industrial use.The water source area of the MR-SNWDP is the region that is most sensitive to and most affected by the construction of this water diversion project.In this study,we used Landsat Thematic Mapper(TM)and HJ-1 A/B images from 2000 to 2015 by an object-based approach with a hierarchical classification method for mapping land cover in the water source area.The changes in land cover were illuminated by transfer matrixes,single dynamic degree,slope zones and fractional vegetation cover(FVC).The results indicated that the area of cropland decreased by 31%and was replaced mainly by shrub over the past 15 years,whereas forest and settlements showed continuous increases of 29.2% and 77.7%,respectively.The changes in cropland were obvious in all slope zones and decreased most remarkably(–43.8%)in the slope zone above 25°.Compared to the FVC of forest and shrub,significant improvement was exhibited in the FVC of grassland,with a growth rate of 16.6%.We concluded that local policies,including economic development,water conservation and immigration resulting from the construction of the MR-SNWDP,were the main drivers of land cover changes;notably,they stimulated the substantial and rapid expansion of settlements,doubled the wetlands and drove the transformation from cropland to settlements in immigration areas. 展开更多
关键词 remote sensing land cover change object-based classification Middle Route of the South-to-North Water Diversion project(MR-SNWDP) China
下载PDF
Projected changes in mean and extreme climates over Hindu Kush Himalayan region by 21 CMIP5 models 被引量:4
7
作者 WU Jie XU Ying GAO Xue-Jie 《Advances in Climate Change Research》 SCIE CSCD 2017年第3期176-184,共9页
Based on the outputs from 21 CMIP5 (Coupled Model Intercomparison Project phase 5) models, future changes in the mean temperature, precipitation and four climate extreme indices (annual maximum of daily maximum temper... Based on the outputs from 21 CMIP5 (Coupled Model Intercomparison Project phase 5) models, future changes in the mean temperature, precipitation and four climate extreme indices (annual maximum of daily maximum temperature (TXx), minimum of daily minimum temperature (TNn), annual total precipitation when the daily amount exceeds the 95th percentile of wet-day precipitation (R95p), and maximum consecutive 5-day precipitation (RX5day)) over Hindu Kush Himalayan (HKH) region are investigated under the greenhouse gas concentration pathways of RCP4.5 and RCP8.5. Two periods of the 21st century, 2036e2065 and 2066e2095, are selected, with the reference period is considered as 1976e2005. Results show general increase of the mean temperature, TXx and TNn under both scenarios, with the largest increases found during 2066e2095 under RCP8.5. Future precipitation is projected to increase over most part of HKH, except for the northwestern part. Intensification of the precipitation extremes is projected over the region. The uncertainties of mean temperature, TXx and TNn over the HKH1 subregions are the largest compared to the other three subregions and the overall HKH. Besides RX5day during 2036e2065 over HKH1, the uncertainties of R95p and RX5day tend to be larger following the increase of greenhouse gas concentrations. The multimodel ensemble medians of temperature and four extreme indices under RCP8.5 are projected to be larger than those under RCP4.5 in each of the subregions. 展开更多
关键词 HINDU Kush HIMALAYAN region CMIP5 Mean CLIMATe eXTReMe CLIMATe eVeNTS CLIMATe change projectION
下载PDF
LAND USE CHANGE AND ITS SOCIO-ECONOMIC DRIVING FORCES UNDER STRESS OF PROJECT IN OLD RESERVOIR AREA——Case Study of Linshui Reservoir Area of Dahonghe Reservoir in Sichuan Province 被引量:3
8
作者 SHAO Jing-an HUANG Xue-qin +2 位作者 QU Ming WEI Chao-fu XIE De-ti 《Chinese Geographical Science》 SCIE CSCD 2005年第4期315-324,共10页
The old reservoir areas built in 1950s- 1970s left behind many socio-economic problems, because of the administrative backward migration and little migration fund, and all these problems would be tied to land. Based o... The old reservoir areas built in 1950s- 1970s left behind many socio-economic problems, because of the administrative backward migration and little migration fund, and all these problems would be tied to land. Based on interviewing with peasant households, combining land use survey and socio-economic statistical index, this paper analyzed land use change and its corresponding driving forces in Linshui reservoir area of Dahonghe Reservoir. Results showed that land use change in the reservoir area was mainly embodied on low-lying land submergence and migration requisition land. The former changed the land use patterns, and the latter mainly reconstructed original land property and made land over-fragmented. Cultivated land per capita was 0.041ha in this area, below the cordon of cultivated land per capita enacted by FAO. Currently, there were still 30.25% of peasant households being short of grain in trimester of one year, and there were 35.27% of people living under the poverty line. The conditions of eco-environmerit in Linshui Reservoir Area were worse, and healthy and sub-healthy eco-environment accounted for less proportion, composed of green belt around the reservoir area and paddy field ecosystem, and economic forest and orchard ecosystem, respectively. The stress of the reservoir project was macroscopic background to analyze the driving factors of land use change, and real underlying diving factor of the land use change in the area was the change of cultural landscape under the stress of reservoir project. The rapid increase of population was the key factor to induce the change of man-land relationship in the reservoir area, the low level of rural economy was the crucial factor to decide how migrants input for production, and the belief of migrants, influencing the land use patterns in a certain extent, was the inducing factor to keep land use stable. The low-lying submergence and infrastructure construction accompanied the reservoir project were leading factors driving land use change in the area, while changes in land use patterns, after the reservoir being built, were the responses of peasant households' behaviors to land use change. 展开更多
关键词 land use change socio-economic driving factor project stress old reservoir area
下载PDF
Downscaled climate change projections for the Hindu Kush Himalayan region using CORDEX South Asia regional climate models 被引量:3
9
作者 Jayanarayanan SANJAY Raghavan KRISHNAN +2 位作者 Arun Bhakta SHRESTHA Rupak RAJBHANDARI REN Guo-Yu 《Advances in Climate Change Research》 SCIE CSCD 2017年第3期185-198,共14页
This study assessed the regional climate models (RCMs) employed in the Coordinated Regional climate Downscaling Experiment (CORDEX) South Asia framework to investigate the qualitative aspects of future change in seaso... This study assessed the regional climate models (RCMs) employed in the Coordinated Regional climate Downscaling Experiment (CORDEX) South Asia framework to investigate the qualitative aspects of future change in seasonal mean near surface air temperature and precipitation over the Hindu Kush Himalayan (HKH) region. These RCMs downscaled a subset of atmosphere ocean coupled global climate models (AOGCMs) in the Coupled Model Intercomparison Project phase 5 (CMIP5) to higher 50 km spatial resolution over a large domain covering South Asia for two representation concentration pathways (RCP4.5 and RCP8.5) future scenarios. The analysis specifically examined and evaluated multi-model and multi-scenario climate change projections over the hilly sub-regions within HKH for the near-future (2036e2065) and far-future (2066e2095) periods. The downscaled multi-RCMs provide relatively better confidence than their driving AOGCMs in projecting the magnitude of seasonal warming for the hilly sub-region within the Karakoram and northwestern Himalaya, with higher projected change of 5.4 C during winter than of 4.9 C during summer monsoon season by the end of 21st century under the high-end emissions (RCP8.5) scenario. There is less agreement among these RCMs on the magnitude of the projected warming over the other sub-regions within HKH for both seasons, particularly associated with higher RCM uncertainty for the hilly sub-region within the central Himalaya. The downscaled multi-RCMs show good consensus and low RCM uncertainty in projecting that the summer monsoon precipitation will intensify by about 22% in the hilly subregion within the southeastern Himalaya and Tibetan Plateau for the far-future period under the RCP8.5 scenario. There is low confidence in the projected changes in the summer monsoon and winter season precipitation over the central Himalaya and in the Karakoram and northwestern Himalaya due to poor consensus and moderate to high RCM uncertainty among the downscaled multi-RCMs. Finally, the RCM related uncertainty is found to be large for the projected changes in seasonal temperature and precipitation over the hilly sub-regions within HKH by the end of this century, suggesting that improving the regional processes and feedbacks in RCMs are essential for narrowing the uncertainty, and for providing more reliable regional climate change projections suitable for impact assessments in HKH region. 展开更多
关键词 CMIP5 CORDeX SOUTH ASIA ReGIONAL CLIMATe models HINDU Kush HIMALAYAN CLIMATe change projections
下载PDF
Comparative Assessment of Impacts of Future Climate Change on Runoff in Upper Daqinghe Basin,China
10
作者 INGABIRE Romaine CHANG Yuru +3 位作者 LIU Xia CAO Bo UMUGWANEZA Adeline SHEN Yanjun 《Chinese Geographical Science》 SCIE CSCD 2024年第3期564-578,共15页
Assessing runoff changes is of great importance especially its responses to the projected future climate change on local scale basins because such analyses are generally done on global and regional scales which may le... Assessing runoff changes is of great importance especially its responses to the projected future climate change on local scale basins because such analyses are generally done on global and regional scales which may lead to generalized conclusions rather than specific ones.Climate change affected the runoff variation in the past in the upper Daqinghe Basin,however,the climate was mainly considered uncertain and still needs further studies,especially its future impacts on runoff for better water resources management and planning.Integrated with a set of climate simulations,a daily conceptual hydrological model(MIKE11-NAM)was applied to assess the impact of climate change on runoff conditions in the Daomaguan,Fuping and Zijingguan basins in the upper Daqinghe Basin.Historical hydrological data(2008–2017)were used to evaluate the applicability of the MIKE11-NAM model.After bias correction,future projected climate change and its impacts on runoff(2025–2054)were analysed and compared to the baseline period(1985–2014)under three shared social economic pathways(SSP1-2.6,SSP2-4.5,and SSP5-8.5)scenarios from Coupled Model Intercomparison Project Phase 6(CMIP6)simulations.The MIKE-11 NAM model was applicable in all three Basins,with both R^(2)and Nash-Sutcliffe Efficiency coefficients greater than 0.6 at daily scale for both calibration(2009–2011)and validation(2012–2017)periods,respectively.Although uncertainties remain,temperature and precipitation are projected to increase compared to the baseline where higher increases in precipitation and temperature are projected to occur under SSP2-4.5 and SSP5-8.5 scenarios,respectively in all the basins.Precipitation changes will range between 12%–19%whereas temperature change will be 2.0℃–2.5℃ under the SSP2-4.5 and SSP5-8.5 scenarios,respectively.In addition,higher warming is projected to occur in colder months than in warmer months.Overall,the runoff of these three basins is projected to respond to projected climate changes differently because runoff is projected to only increase in the Fuping basin under SSP2-4.5 whereas decreases in both Daomaguan and Zijingguan Basins under all scenarios.This study’s findings could be important when setting mitigation strategies for climate change and water resources management. 展开更多
关键词 RUNOFF climate change MIKe11-NAM model Coupled Model Intercomparison project Phase 6(CMIP6) upper Daqinghe Basin China
下载PDF
Spatiotemporal characteristics and driving mechanisms of land use/land cover(LULC)changes in the Jinghe River Basin,China
11
作者 WANG Yinping JIANG Rengui +4 位作者 YANG Mingxiang XIE Jiancang ZHAO Yong LI Fawen LU Xixi 《Journal of Arid Land》 SCIE CSCD 2024年第1期91-109,共19页
Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and... Understanding the trajectories and driving mechanisms behind land use/land cover(LULC)changes is essential for effective watershed planning and management.This study quantified the net change,exchange,total change,and transfer rate of LULC in the Jinghe River Basin(JRB),China using LULC data from 2000 to 2020.Through trajectory analysis,knowledge maps,chord diagrams,and standard deviation ellipse method,we examined the spatiotemporal characteristics of LULC changes.We further established an index system encompassing natural factors(digital elevation model(DEM),slope,aspect,and curvature),socio-economic factors(gross domestic product(GDP)and population),and accessibility factors(distance from railways,distance from highways,distance from water,and distance from residents)to investigate the driving mechanisms of LULC changes using factor detector and interaction detector in the geographical detector(Geodetector).The key findings indicate that from 2000 to 2020,the JRB experienced significant LULC changes,particularly for farmland,forest,and grassland.During the study period,LULC change trajectories were categorized into stable,early-stage,late-stage,repeated,and continuous change types.Besides the stable change type,the late-stage change type predominated the LULC change trajectories,comprising 83.31% of the total change area.The period 2010-2020 witnessed more active LULC changes compared to the period 2000-2010.The LULC changes exhibited a discrete spatial expansion trend during 2000-2020,predominantly extending from southeast to northwest of the JRB.Influential driving factors on LULC changes included slope,GDP,and distance from highways.The interaction detection results imply either bilinear or nonlinear enhancement for any two driving factors impacting the LULC changes from 2000 to 2020.This comprehensive understanding of the spatiotemporal characteristics and driving mechanisms of LULC changes offers valuable insights for the planning and sustainable management of LULC in the JRB. 展开更多
关键词 land use/land cover(LULC)changes driving mechanisms trajectory analysis geographical detector(Geodetector) Grain for Green project Jinghe River Basin
下载PDF
Climate Change Projections and the Associated Potential Impacts for Somalia 被引量:1
12
作者 Linda Ajuang Ogallo Philip Omondi +1 位作者 Gilbert Ouma Gordon Wayumba 《American Journal of Climate Change》 2018年第2期153-170,共18页
Somalia has faced severe challenges linked to climate variability, which has been exacerbated by conflict and limited governance that persisted for decades. Today climate extremes such as floods, drought, and coastal ... Somalia has faced severe challenges linked to climate variability, which has been exacerbated by conflict and limited governance that persisted for decades. Today climate extremes such as floods, drought, and coastal marine severe systems among others are always associated with the destruction of property and livelihoods;losses of lives lost, migrations, and resource based conflicts among many other miseries. Intergovernmental Panel on Climate Change (IPCC) has shown that climate change is real and requires sound knowledge of local future climate change scenarios. The study attempted to provide projected rainfall and temperature change scenarios over Lower Jubba, Somalia. This was done using the downscaled Coordinated Regional Downscaling Experiment (CORDEX) RCMs data. The simulated temperature and rainfall data derived from the CORDEX RCMs ensemble were compared with the observed data. The study focused on the IPCC projected periods of 2030, 2050 and 2070 benchmarks. Analysis of the projected rainfall indicated a decreasing trend in rainfall leading up to 2030 followed by an increase in rainfall with the 2050 and 2070 scenarios. In the case of temperature, the projections from all the models showed increase in minimum and maximum temperatures in all seasons and sub periods, like being observed by temperature projection over other parts of the world. The 2030, 2050 and 2070 projected rainfall and temperature change scenarios show that Somalia future development and livelihoods will in future face increased threats of climate extremes unless effective climate smart adaptation systems form integral components of national development strategies. 展开更多
关键词 CLIMATe change CLIMATe MODeLING SOMALIA projections CORDeX
下载PDF
A CMIP6-based assessment of regional climate change in the Chinese Tianshan Mountains
13
作者 LIU Xinyu LI Xuemei +2 位作者 ZHANG Zhengrong ZHAO Kaixin LI Lanhai 《Journal of Arid Land》 SCIE CSCD 2024年第2期195-219,共25页
Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan M... Climate warming profoundly affects hydrological changes,agricultural production,and human society.Arid and semi-arid areas of China are currently displaying a marked trend of warming and wetting.The Chinese Tianshan Mountains(CTM)have a high climate sensitivity,rendering the region particularly vulnerable to the effects of climate warming.In this study,we used monthly average temperature and monthly precipitation data from the CN05.1 gridded dataset(1961-2014)and 24 global climate models(GCMs)of the Coupled Model Intercomparison Project Phase 6(CMIP6)to assess the applicability of the CMIP6 GCMs in the CTM at the regional scale.Based on this,we conducted a systematic review of the interannual trends,dry-wet transitions(based on the standardized precipitation index(SPI)),and spatial distribution patterns of climate change in the CTM during 1961-2014.We further projected future temperature and precipitation changes over three terms(near-term(2021-2040),mid-term(2041-2060),and long-term(2081-2100))relative to the historical period(1961-2014)under four shared socio-economic pathway(SSP)scenarios(i.e.,SSP1-2.6,SSP2-4.5,SSP3-7.0,and SSP5-8.5).It was found that the CTM had experienced significant warming and wetting from 1961 to 2014,and will also experience warming in the future(2021-2100).Substantial warming in 1997 was captured by both the CN05.1 derived from interpolating meteorological station data and the multi-model ensemble(MME)from the CMIP6 GCMs.The MME simulation results indicated an apparent wetting in 2008,which occurred later than the wetting observed from the CN05.1 in 1989.The GCMs generally underestimated spring temperature and overestimated both winter temperature and spring precipitation in the CTM.Warming and wetting are more rapid in the northern part of the CTM.By the end of the 21st century,all the four SSP scenarios project warmer and wetter conditions in the CTM with multiple dry-wet transitions.However,the rise in precipitation fails to counterbalance the drought induced by escalating temperature in the future,so the nature of the drought in the CTM will not change at all.Additionally,the projected summer precipitation shows negative correlation with the radiative forcing.This study holds practical implications for the awareness of climate change and subsequent research in the CTM. 展开更多
关键词 climate change Coupled Model Intercomparison project Phase 6(CMIP6) global climate models(GCMs) shared socio-economic pathway(SSP)scenarios standardized precipitation index(SPI) Chinese Tianshan Mountains
下载PDF
Gravity change and its mechanism after the first water impoundment in Three Gorges Project
14
作者 孙少安 项爱民 +1 位作者 朱平 申重阳 《Acta Seismologica Sinica(English Edition)》 EI CSCD 2006年第5期522-529,共8页
In this paper we have analyzed precise gravity survey and gravity effects resulted from water loading, crustal deformation, ground water level change and precipitation before and after the water impoundment in the Thr... In this paper we have analyzed precise gravity survey and gravity effects resulted from water loading, crustal deformation, ground water level change and precipitation before and after the water impoundment in the Three Gorges Reservoir. We found that: ① In dam area of the reservoir, gravity effect resulted from water load increase is the most significant, maximum gravity change is 200×10^-8 m/s^2, but this effect is limited in amplitude and range. Gravity change can be observed about 5 km offshore. The gravity change caused by ground water level change is regional; and the impact of precipitation on it should not be neglected. ② At head area of the reservoir, the maximum gravity change is near Xiangxi. Monitoring the variation of gravity field and further study should continue in the future. 展开更多
关键词 the Three Gorges project the first water impoundment gravity change
下载PDF
Projective Changes between Generalized (<i>α</i>, <i>β</i>)-Metric and Randers Metric
15
作者 Pradeep Kumar Madhu T. S. Sharath B. R. 《Advances in Pure Mathematics》 2020年第5期312-321,共10页
Projective change between two Finsler metrics arises from Information Geom-etry. Such metrics have special geometric properties and will play an important role in Finsler geometry. The purpose of the present paper is ... Projective change between two Finsler metrics arises from Information Geom-etry. Such metrics have special geometric properties and will play an important role in Finsler geometry. The purpose of the present paper is to find a relation to characterize the projective change between generalized (α, β) - metric ( μ1, μ2 and μ3 ≠ 0 are constants) and Randers metric , where α and are two Riemannian metrics, β and are 1-forms. Further, we study such projective change when generalized (α, β) -metric F has some curvature property. 展开更多
关键词 FINSLeR Space with β) -Metric projectIVe change Locally projectively Flat Randers MeTRIC
下载PDF
Monitoring Climate Change and Air Quality Project Initiative: A Case Study of the Collaboration between ECSTAR and TeroSpace in Thailand
16
作者 Borwonrat Kanchanarat Umaporn Akkathai +1 位作者 Cattleya Delmaire Settapong Malisuwan 《Journal of Environmental Protection》 CAS 2023年第3期230-241,共12页
In Thailand, the alteration of weather patterns has resulted in an increase in instances of irregular rainfall, contributing to the occurrence of droughts. The decline of water levels in dams, due to the combined effe... In Thailand, the alteration of weather patterns has resulted in an increase in instances of irregular rainfall, contributing to the occurrence of droughts. The decline of water levels in dams, due to the combined effects of climate change and prolonged droughts, has had a significant impact on agricultural productivity. Drought has a profound effect on the terrestrial biosphere and the atmospheric water cycle and can also contribute to air pollution. Researchers have found a strong correlation between air pollution and drought severity. In response to this pressing issue, the Excellence Center of Space Technology and Research (ECSTAR) at King Mongkut’s Institute of Technology Ladkrabang has joined forces with TeroSpace company to launch an initiative aimed at promoting sustainable growth in Chiang Rai, a province in Thailand known for its rich biodiversity. ECSTAR and TeroSpace’s partnership on the sustainable growth initiative in Thailand’s Chiang Rai province focuses on expanding their collaboration to include international organizations such as the Centre National d’Etudes Spatiales (CNES), which will provide access to satellite imagery and climate and weather information to improve decision-making in various areas of development. CNES is a French organization in charge of space-related activities in France. The collaboration between France and Thailand for this project, in the context of the France-Thailand Year of Innovation 2023, will be crucial for the successful initiation and execution of this research project. The project aims to explore the relationship between air pollution and climate change through the deployment of air quality monitoring devices in designated locations, connected to a global data-sharing network. The results of this research will be valuable to policymakers as they consider the interplay between air pollution and climate change and make efforts to address these challenges. 展开更多
关键词 Air Pollution Climate change MONITORING COLLABORATION project
下载PDF
Climate Change Projections for Mediterranean Region with Focus over Alpine Region and Italy
17
作者 Paola Faggian 《Journal of Environmental Science and Engineering(B)》 2015年第9期482-500,共19页
Climate change projections over the Mediterranean region have been elaborated by using the outputs of ten ENSEMBLES regional climate simulations with an horizontal resolution of 25 km under the SRES A1B emission scena... Climate change projections over the Mediterranean region have been elaborated by using the outputs of ten ENSEMBLES regional climate simulations with an horizontal resolution of 25 km under the SRES A1B emission scenario. The analysis concerns some surface atmospheric variables: mean sea level pressure, temperature, precipitation and wind speed. At first, model validations have been performed by comparing model results with E-OBS and ERA-Interim data in reproducing the last decades over some Italian sub-areas and the Alpine region. In spite of the considerable spread in the models' performances to represent the reference climate, a multi-model reconstruction has been computed and some seasonal climate change projections have been elaborated. About the mean climate changes, the more significant signals expected by 2050 are a maximum warming (about 2 ~C) and maximum drying (about 20%) in the southern Europe in summer. Moreover, the results indicate an increasing risk for some severe weather conditions: more days of extremely high temperature in summer over the whole area, a greater occurrence of flooding and storms over coasts during spring and autumn seasons and a more serious wet-snow event over Alpine region in winter. No significant signals of wind changes have been detected. 展开更多
关键词 eNSeMBLeS simulations Mediterranean climate change future multi-model projections.
下载PDF
Projected Changes in Semi Permanent Systems of Indian Summer Monsoon in CORDEX-SA Framework
18
作者 Savita Patwardhan Ashwini Kulkarni Sudhir Sabade 《American Journal of Climate Change》 2016年第2期133-146,共14页
The semi-permanent systems such as Seasonal Heat Low (HL), Monsoon Trough (MT), Tibetan Anticyclone (TA), Tropical Easterly Jet (TEJ) and Low Level Jet (LLJ) or Somali jet are observed over Indian region during Indian... The semi-permanent systems such as Seasonal Heat Low (HL), Monsoon Trough (MT), Tibetan Anticyclone (TA), Tropical Easterly Jet (TEJ) and Low Level Jet (LLJ) or Somali jet are observed over Indian region during Indian summer monsoon season (June through September). These systems play a vital role in defining the strength of the Indian summer monsoon rainfall as a whole. Here we evaluate the ability of Consortium for Small-Scale Modeling (COSMO) regional Climate Model (COSMO-CLM), a high resolution regional climate model within the Coordinated Regional Climate Downscaling Experiment for South Asia (CORDEX-SA) framework, to simulate these systems of Indian summer monsoon. The historical runs of the COSMO-CLM for the period 1951-2000 are analysed. Overall the COSMO-CLM is able to simulate these components reasonably well. Possible changes in the position and the strength of these systems and their role in changing rainfall pattern over India are examined to assess the impact of global warming, under the RCP 4.5 simulations towards the end of the century (2051-2100). The analysis shows that the semi permanent systems may not strengthen in the future as compared to the present climate. The summer monsoon rainfall does not show uniform changes over the region. It is likely to enhance over the southern parts of the country, south of 20?S while it is projected to decrease in the northern parts under the global warming scenario. 展开更多
关键词 Summer Monsoon Semi Permanent Systems Regional Climate Model projected changes
下载PDF
Effects. of Change Orders through Technical Programs on Construction Projects in Jordan
19
作者 Ahmed Ali Khatatbeh 《Journal of Civil Engineering and Architecture》 2016年第11期1213-1219,共7页
Regarding construction projects, no project is implemented exactly as planned. Changes in construction projects are common due to the dynamic nature of the construction process. It is necessary to use effective and ap... Regarding construction projects, no project is implemented exactly as planned. Changes in construction projects are common due to the dynamic nature of the construction process. It is necessary to use effective and appropriate tools by project management to support decision-making and control changes during all stages of project implementation. This study examined the effects of change orders through technical programs on construction projects in Jordan and focused on how to overcome these effects by making usual orders that can be handled by each of the contracting parties. Also, this study added an advantage by not addressing the negative effects of change orders, but it provided many positive effects of change orders by using technical programs method, which has not been yet researched in Jordanian studies in particular, and in global studies in general. The researcher used descriptive analytical method by interviews to collect data through nine questions to a random sample of 30 engineers selected form constructions projects in Jordan. The results related to the study questions on the effect of change orders through technical programs on construction projects in Jordan showed that, most of the study samples confirm that change orders through technical programs decrease the cost of the projects, cause no need for more materials, cause no delay in the completion schedule, enhances the quality of work, and increase the productivity of the work force. The study recommended applying integrated change management system with technical supports form different technologies, developing effective innovative and practical solution to manage change orders and increase training programs to qualify and increase engineering skills in dealing with ICT (information and communication technologies) program. 展开更多
关键词 change orders construction projects technical programs ICT (information and communication technologies)
下载PDF
The Projected Changes of Precipitations over Niger Under the Scenarios RCP 4.5 and RCP 8.5
20
作者 Mounkaila Saley Moussa Yacoubou Mahamadou Abdou Saley Inoussa 《Journal of Environmental Science and Engineering(B)》 2022年第6期248-266,共19页
The socio-economic activities of Niger rely on agriculture which is strongly affected by changes in precipitation during the rainy season.The ultimate aim of this study is to assess the projected changes of precipitat... The socio-economic activities of Niger rely on agriculture which is strongly affected by changes in precipitation during the rainy season.The ultimate aim of this study is to assess the projected changes of precipitation over Niger under the Representative Concentration Pathways(RCP)scenarios 4.5(RCP 4.5)and RCP 8.5 using multi-RCM(Multi-Regional Climate)model approach.The observation data are from CHIRPS(Climate Hazards Group InfraRed Precipitation with Station)and the RCMs are from the SMHI(Swedish Meteorological and Hydrological Institute)model(RCA4)driven by ten(10)different GCMs(General Circulation Model)(e.g.,CCCma,CSIRO,ICHEC,IPSL,MIROC,MOHC-HadGEM2,MPI,NCC-NorESM1,NOOA,and NRCM)within the framework of CORDEX(Coordinated Regional Climate Downscaling Experiment)Africa experiment.The reference and projections periods in this study are respectively 1981-2005 for the present and 2011-2100 for the near,medium and far future divided into three periods,2011 to 2040(P1),2041 to 2070(P2)and 2071 to 2100(P3).The methodology used,consists of assessing the performance of the multi-RCMs of RCA4 model(with respect of CHIRPS)in simulating the precipitations changes by computing the spatial distribution and anomalies of precipitations;and their indices of RMSE(Root Mean Square Error),the bias,SPI(Standardized Precipitation Anomaly Index),correlation coefficient,statistical t-test,spatial evolution rate and the rate of temporal change.After the validation of the multi-RCMs RCA4 models,the ensemble mean of the models is used to assess the projected changes of precipitations over Niger in the future.The results show that most of the multi-RCMs capture the four climatic zone except for IPSL.While the ensemble mean of the models simulates(as compared to CHIRPS)more accurately the monthly,annual precipitations anomalies and their indices than individual’s models in the reference period,some RCMs(e.g.,CSIRO-IPSL and CCCma-HadGEM)poorly reproduce them.The projected changes of precipitations indicate for the scenario RCP 4.5 respectively a moderately surplus of precipitation years in the period P1 and moderately deficit years in the period P2 while the period P3 shows a small upward precipitation trend.In contrary,for the scenario RCP 8.5,all the three periods(P1,P2 and P3)indicate an intensification of precipitation leading to a longer wet period which may lead to extreme precipitations and flooding.Moreover,both scenarios have projected an increase of total monthly precipitation in May and September and a decrease in July and August respectively which will likely lead to an early onset and late cessation of the rainy season;and a shift of the peak of the rainy season.Therefore,this study shows the need of a monitoring system for the projected changes of precipitation in the near future to anticipate urgent action in wet/dry periods to adapt to a changing climate. 展开更多
关键词 Climate projection precipitation changes anomaly scenarios RCP NIGeR SAHeL
下载PDF
上一页 1 2 93 下一页 到第
使用帮助 返回顶部