The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and ...The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.展开更多
Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan S...Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan Strait, the model-produced results agree quite well with those of previous researches using observational data from coastal tidal gauge stations. According to the results, the co-tidal and co-range charts are given. Furthermore, the characteristics of 8 major tidal constituents have been uminated respectively. The result shows that: (1) The tide motion can be attributed to the interaction between the degenerative rotary tidal system in the north and the progressive tidal system in the south. (2) The southward and northward tidal waves of semi-diurnal tide converge in the middle of the Taiwan Strait while the diurnal tidal waves propagate southwestward through the Taiwan Strait and the Luzon Strait. (3) The maximum amplitude of semi-diurnal tides exists at the area between the Meizhou Bay and Xinghua Bay, and that of diurnal tides appears in the region to the east of the Leizhou Peninsula, (4) The patterns of co-tidal and co-range charts of N2, K2 and P1, Q1 tidal constituents are similar to those of M2, S2 and K1 O1 tidat constituents, respectively展开更多
The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began ...The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began in the Devonian, persisted in the Carboniferous, and became fiercer in the Permian. Controlled by syndepositional fault-zones, varieties of isolated carbonate platforms, large and small, were developed in the background of a deep-water basin, namely, an inter-platform ditch. And a special paleogeographical Late Paleozoic pattern marked by “platform-basin-hill-trough” was produced in both the Dianqiangui basin and its adjacent areas. Affected by regional tectonic activities and the global changes in the sea level, the platform carbonates and coal measures superimposed each other cyclically on the attached platform. The reef-building on the isolated platform and the margin of the attached platform corresponds to the development of the shale succession in the deep-water basin. All of these elementary characteristics reflect a regular and sophisticated filling succession of the Dianqiangui basin, a result of the dual controls of the regionally tectonic activities and the eustacy. Based on the two elementary features of the third-order sequences, i.e. the regularity of sedimentary-facies succession in space and the simultaneity of environmental changes in time, 25 third-order sequences could be discerned in the Upper Paleozoic strata in the Dianqiangui basin and its adjacent areas. On the basis of the two kinds of facies-changing surfaces and the two kinds of diachronisms in stratigraphic records, the regional Late Paleozoic sequence-stratigraphic framework in the Dianqiangui basin and its adjacent areas can be established. There are two types of facies-changing surfaces and two types of diachronisms in stratigraphic records: the static type, a result of the change in sedimentary facies in space, and the dynamic type, a result of the change in time. These two types of facies-changing surfaces led to the generation of the two types of diachronisms: the diachronism of facies-changing surfaces that was formed by the static facies-changing surfaces, and the diachronism of punctuated surfaces that was formed by the dynamic facies-changing surfaces. The two types of facies-changing surfaces and the two types of diachronisms in stratigraphic records are the key to the establishment of the sequence-stratigraphic framework. The sequence boundaries could be divided geologically into four types: tectonic unconformity, sedimentary unconformity, drowned unconformity and their correlative surfaces. All of these four types can be further grouped into exposed punctuated surfaces and deepened punctuated surfaces. The tectonic unconformity is similar to Type Ⅰ sequence boundary, and the sedimentary unconformity is similar to Type Ⅱ sequence boundary defined by Vail et al.. In terms of sequence stratigraphy, the tectonic unconformities of the Ziyun movement, the Qiangui epeirogeny and the Dongwu revolution as well as the drowned unconformity in the transitional period from the Permian to the Triassic can be systematically defined and their geological characteristics are briefly presented.展开更多
Continental China has moved dextral Eastward since Cenozoic time,driven by the collision of the Indian with the Eurasian plate.Evidence for this comes from landscape evolution,the distribution of earthquake epicenters...Continental China has moved dextral Eastward since Cenozoic time,driven by the collision of the Indian with the Eurasian plate.Evidence for this comes from landscape evolution,the distribution of earthquake epicenters,Cenozoic sedimentary and volcanic rocks,and the measurement of GPS velocity vectors,the distribntion of crustal stress,paleomagnetic data,and deep mantle structure,among others.This movement commenced around 40 Ma,coupled with thickened lithosphere and widespread stress release along strikeslip faults that bound the continental Chinese block.Because of continued Northward subduction of the Indian plate,manifestation of the dextral movement has intensified since 25 Ma.Far-reaching effects include extensive strike-slip movement on the Tan-Lu fault in Eastern China,formation of the Dabie ultrahigh pressure metamorphic terrane,extensive thrust faults in East China,delamination and thickening of the lithosphere of South China,a possible tectonic doubling of the Middle-Lower Yangtze Valley metallogenic belt,and the formation of the Japan,Huanghai (East China),and South China Sea.展开更多
Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho charact...Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities.展开更多
Based on the CTD data obtained in the southern Taiwan Strait and its adjacent areas in August and September of 1994, the distributional features of the temperature and salinity in the studied area have been analyzed i...Based on the CTD data obtained in the southern Taiwan Strait and its adjacent areas in August and September of 1994, the distributional features of the temperature and salinity in the studied area have been analyzed in detail. The results are as follows: (1) There are two low temperature and high salinity regions in the nearshore area between Dongshan and Shantou and in the southeastern Taiwan Shoal, respectively, which may be caused by upwellings. (2) There exists a cold eddy in the northwestern sea area and a warm eddy with two high temperature cores in the eastern sea area of the Dongsha Islands, which are related to the anti-cyclonic turning of the seawater near the Dongsha Islands. (3) A westward high temperature and high salinity water tongue extends through the northern Luzon Strait and reaches the sea areas near the Dengsha Islands and southern Taiwan Strait.展开更多
In this paper, we collect 6 361 waveform data to calculate the shear wave splitting parameters from a regional seismic network of 22 digital stations in Yunnan and its adjacent area from July 1999 to June 2005. By usi...In this paper, we collect 6 361 waveform data to calculate the shear wave splitting parameters from a regional seismic network of 22 digital stations in Yunnan and its adjacent area from July 1999 to June 2005. By using the cross-correlation method, 64 splitting events of 16 stations are processed. We also collect the splitting results of eight earthquake sequences to present the characteristics of shear wave splitting in Yunnan and its adjacent areas. The orientations of maximum principal compressive stress of three sub-regions in this area are derived from the CMT focal mechanism solutions of 43 moderate-strong earthquakes provided by Harvard University by the P axis azimuth-averaging method. The principal strain rate at each observatory is deduced from the observations of Crustal Movement Observation Network of China during the period from 1999 to 2004. In addition, the data of Pn aniso- tropy and SKS splitting of Yunnan and its adjacent areas are also collected. We have discovered from this study that the continental lithosphere, as a main seismogenic environment for strong earthquake, can be divided into blocks laterally; the mechanical behavior of lithosphere varies with depth and can be divided into different layers in the vertical orientation; the information of crustal deformation obtained from GPS might be affected by the type of blocks, since there are different types of active blocks in Yunnan and its adjacent areas; the shear wave splitting in this region might be affected mainly by the upper crust or even the surface tectonics.展开更多
3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied...3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.展开更多
Enderby Land in East Antarctica and its adjacent areas,which are closely related to the Indian Plate in their geological evolution,have become one of the key zones for studies on how the Antarctic continent evolves.Ba...Enderby Land in East Antarctica and its adjacent areas,which are closely related to the Indian Plate in their geological evolution,have become one of the key zones for studies on how the Antarctic continent evolves.Based on the isostasy and flexure theories of the lithosphere and using the CRUST1.0 model as the depth constraint,this paper uses the gravity field model EIGEN-6C4 and topographic data to calculate the isostatic gravity anomalies of Enderby Land and its adjacent areas.Then,the crustal thickness of the study area is calculated,and three comprehensive geophysical interpretation profiles that vertically span the study area are plotted.The results show that the flexural isostatic gravity anomalies in Enderby Land and its adjacent areas are closely related to the regional tectonic setting,and the anomalies in different regions differ substantially,ranging from−50×10^(−5)m/s^(2)to 85×10^(−5)m/s^(2).A zone of high isostatic gravity anomalies(30×10^(−5)−80×10^(−5)m/s^(2))is distributed outside the Cooperation Sea and Queen Maud Land,which may be plate remnants generated by early rifting.Except for the Kerguelen Plateau,which was formed by a hotspot and has a crustal thickness of 15 km,the thickness of the oceanic crust in other parts of the study area changes slightly by approximately 4–9 km,with the thinnest part being in Enderby Basin.The thickness of the inland crust along the coastline increases with the elevation,with the maximum thickness reaching 34 km.The isostatic gravity anomalies corresponding to the zone of high magnetic anomalies along the continental margin of Queen Maud Land are negative and small,with an isostatic adjustment trend indicating Moho surface uplift,and those on the edge of central Enderby Land are near zero,approaching the isostatic state,which may be caused by the magmatism at the early stage of rifting.The continental-oceanic boundary should be close to the contour line of the crustal thickness 10–12 km on the outer edge of the coastline.展开更多
In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wa...In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wave group velocity dispersion images in the study area( 101°- 112°E,31°-42°N) according to the method of noise imaging,with period between 6s - 50s and resolution of 0.5°. The Yinchuan basin in the 6s - 26 s period obviously shows a low velocity anomaly,which is not uniform and has a tendency to gradually weaken; the Guanzhong Basin in 6 s-22s shows a strip of low velocity anomaly and demonstrates a transverse inhomogeneity,where velocity in the southeast is slightly faster than that in the northwest. In the 30s - 50s period it shows that in the Yinchuan graben basin and its southern area,there is a large low velocity anomaly area,which moves from northeast to southwest. It shows that between the main active tectonic zones,like mountains and basins,there are obvious geomorphologic boundaries. For example,the deep fault near Liupan Mountain is the dividing line between two large tectonic units of eastern and western of China. The inversion results have good correlation with the geological structure and the stratigraphic landform. The results are consistent with the results of artificial seismic section tomography across the basin. It provides an important basis for the dynamics of active tectonic zones and the mechanism of earthquake occurrence in this area.展开更多
Based on 49 digital seismograms recorded by 73 seismic stations in the Jiangsu Telemetered Seismic Network,the paper uses Atkinson's method to calculate the inelastic attenuation coefficient of the Jiangsu area. W...Based on 49 digital seismograms recorded by 73 seismic stations in the Jiangsu Telemetered Seismic Network,the paper uses Atkinson's method to calculate the inelastic attenuation coefficient of the Jiangsu area. We find that the frequency-dependent Q in the Jiangsu region is Q( f) = 272. 1·f^(0. 5575). We also use Moya's method to invert the 63 stations' site responses. The results show that the site responses of the 25 stations in Jiangsu are approximately 1 at a range between 1Hz and 20 Hz, which is consistent with their basements on rocks. The response curves of the site responses of the 14 underground stations are similar to each other. Their site responses show an amplification at low frequencies and minimization at high frequencies. The calculation of the Brune model on the waveform data of M_L≥2. 5 earthquakes from Jiangsu Digital Seismic Network between October 2010 and May 2015 in terms of seismic source parameters of 58 seismic waves shows that there are good correlations between seismic magnitude and other source parameters such as seismic moment, source radius and corner frequency, while the correlations between seismic magnitude and stress drop,and stress drop and source radius are not so good.展开更多
We collected waveforms of a teleseismic event which occurred from January 2007 to October 2011 from 174 broadband seismic stations deployed in Hebei and its adjacent areas. Using the H-k stacking method,the average th...We collected waveforms of a teleseismic event which occurred from January 2007 to October 2011 from 174 broadband seismic stations deployed in Hebei and its adjacent areas. Using the H-k stacking method,the average thickness and Poisson's ratio of the crust are acquired. In order to obtain reliable receiver functions, the broadband seismograms of 488 teleseismic earthquakes occurring in the epicentral distance range from 30° to 90° with magnitudes larger than Mb6. 0 are collected. The results show that crustal thickness have conspicuous lateral heterogeneity and have good correlation to the regional geological tectonic features. Poisson ratio's value is equated with the global models estimates which fluctuate at about 0. 25. Crustal thickness has positive correlation to the topography and the Taihang Mountains form the transition zone of thick and thin crustal thickness. There is an obvious difference in crustal thickness beneath the north and south of the Shanxi earthquake zone and the Poisson ratio of Datong,Ningwu and Anze basins is greater than 0. 3. The crustal thickness beneath the Zhang-Bo( Zhangjiakou-Bohai Sea)earthquake zone decreases from west to north and its Poisson ratio shows conspicuous lateral heterogeneity. The thin crust and low Poisson ratio in the Huabei( North China)basin may correlate with the delamination of the North China craton.展开更多
The cell density, species composition and distribution of phytoplankton, and their relations to environmental factors in Prydz Bay and its adjacent sea area, Antarctica (69degrees-77degrees E, 62degrees-70degrees S) d...The cell density, species composition and distribution of phytoplankton, and their relations to environmental factors in Prydz Bay and its adjacent sea area, Antarctica (69degrees-77degrees E, 62degrees-70degrees S) during the austral summer of 1998/1999 were investigated. A total of 48 taxa belonging to 21 genera of phytoplankton in the sea area were identified. The average cell density of phytoplankton was 22.46 x 10(3) cells/dm(3), of which diatoms were predominant (84.51%). The highest cell density of phytoplankton occurred in Prydz Bay and the adjacent continental shelf where the average cell density was 46.03 x 10(3) cells/dm(3). The lowest cell density (3.34 x 10(3) cells/dm(3)) occurred in deep sea area. The dominant species of phytoplankton was Fragilariopsis curta. The vertical distribution of phytoplankton density was highest in the upper part of 0-50 in depth, lower in 100 in and lowest in 150 in. The species composition and cell density of phytoplankton were influenced by water circulation. The cell density was positively correlated with water temperature and salinity, and negatively correlated with the concentration of nutrients.展开更多
The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area co...The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton, after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.展开更多
On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of...On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and varies, however, the tropic oceanic species predominates overwhelmingly. The distribution of different ecotype species evidences the distribution of different water masses and the state of mixture. The indicator species of each water mass are listed in the paper so as to provide grounds for the variation of currents in the Kuroshio area.The temperature and salinity of sea water are important factors affecting zooplankton distribution, composition and diversity , however the role of salinity is major. With the replacement of one season by another, the correlative levels of temperature and salinity to various zooplankton taxa are more or less significant.展开更多
Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution o...Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.展开更多
Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. rad...Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. radioactivity, total β radioactivity, artificial radioactive 90Srand 157Cs, and factors inflencing the distribution and the content of U in seawater are studied.The mainly radioactive pollution substances and their sources in the sea area are studied by γ spectra obtained from sediment in the sea area. The results show that the main radioactivity substances are natural radioactivity U,Th series and 40K. which were produced by the modern industry and transported into the sea through the main current of the Zhujiang River.展开更多
1-D and 2-D calculation and interpretation are carried out with the DSS data from the western section of Heze-Changzhi profile and the southern section of Zhengzhou-Jinan profile. 2-D velocity structure is determined ...1-D and 2-D calculation and interpretation are carried out with the DSS data from the western section of Heze-Changzhi profile and the southern section of Zhengzhou-Jinan profile. 2-D velocity structure is determined in Tangyin graben and its adjacent area. The result shows that velocity structure of the crust and upper mantle is obviously different in vertical and lateral directions. Crustal thickness varies apparently in this area, and there are local low velocity blocks in the interior crust. The swelling M-discontinuity corresponds to Tangyin graben and Moho depth at the highest swelling position is 31 km. Toward the east, its depth gradually increases to 32 km in Xunxian swelling; toward the west, M-discontinuity becomes a steep zone at the piedmont uplift of Taihang Mountain and reaches 40 km at depth near Changzhi. Through analyzing the relationship between historical earthquakes and deep structure in North China, we infer that seismic risk exists in Tangyin graben and its adjacent area.展开更多
Using the broadband seismic data of the regional stations in the Sichuan Digital Seismic Network and the mobile seismic stations in this region,the receiver function inversion method was adopted to study the character...Using the broadband seismic data of the regional stations in the Sichuan Digital Seismic Network and the mobile seismic stations in this region,the receiver function inversion method was adopted to study the characteristics of crustal flow and dynamic effects in Sichuan and adjacent areas. The results show that: Velocity in the crust and upper mantle of the Sichuan basin is significantly higher than that beneath the eastern margin of the Qinghai-Tibetan plateau. The velocity v_S is from 3. 6 to 3. 8km / s in the crust and4. 5- 4. 8km / s in the upper mantle beneath the basin,and there is no low-velocity layer in the crust. The lithology shows a hard block. The v_S velocity in the eastern margin of the Qinghai-Tibetan plateau is lower,with average v_Sof 3. 0- 3. 4km / s in the mid crust and4. 0- 4. 5km / s in the upper mantle. Low-velocity layers are distributed widely in the crust,most of which are in the mid crust at a depth of 20km- 40 km,and there are also a few low-velocity layers appearing in the upper crust at depths of 10km- 20 km and the lower crust at depths of 40km- 60 km. Affected by the northward pushing of the Indian plate,the eastward movement of the eastern margin of the Qinghai-Tibetan plateau is blocked by the hard Sichuan basin,producing a southward and southeastward component.Such movement process is produced by the complicated forces acting in this area. Just under the action of these forces, the eastern margin of the Qinghai-Tibetan plateau becomes a region with complicated geology and intensive earthquake activity. Obstructed by the hard Sichuan basin,the low-velocity crustal flow is delaminated and split into two or three upward and downward tributaries. The upward flow intruded into the upper crust,causing uplift of the earths urface,forming mountain crests; the downward flow intruded into the lower crust and upper mantle,resulting in thickening of the crust and depression of the Moho. The crustal flow in the eastern margin of the Qinghai-Tibetan plateau is mainly distributed along the active faults. The crustal flow flows out from the Qiangtang block in the middle part of the eastern margin of the Qinghai-Tibetan plateau,the mainstream flows along the NW-SE trending Xianshuihe fault zone,then turns NS and flows to the south along the Anninghe and Xiaojiang faults. There is another crustal flow in the north of the study area,flowing in the NE and E-W directions to the Longmenshan faults.展开更多
基金supported by the National Key Research and Development Plan project“Research on Comprehensive Processing and Interpretation Methods of Aeronautical Geophysical Data and Soft ware Development”under contract No.2017YFC0602202。
文摘The distribution of oil and gas resources is intricately connected to the underlying structure of the lithosphere.Therefore,investigating the characteristics of lithospheric thickness and its correlation with oil and gas basins is highly important.This research utilizes recently enhanced geological–geophysical data,including topographic,geoid,rock layer thickness,variable rock layer density,and interface depth data.Employing the principles of lithospheric isostasy and heat conduction,we compute the laterally varying lithospheric thickness in the China seas and adjacent areas.From these results,two pivotal parameters for different types of oil and gas basins were statistically analyzed:the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.A semiquantitative analysis was used to explore the connection between these parameters and the hydrocarbon abundance within the oil and gas basins.This study unveils distinct variations in lithospheric thickness among basins,with oil and gas rich basins exhibiting a thicker lithosphere in the superimposed basins of central China and a thinner lithosphere in the rift basins of eastern China.Notably,the relative fluctuations in lithospheric thickness in basins demonstrate significant disparities:basins rich in oil and gas often exhibit greater thickness fluctuations.Additionally,in the offshore basins of China,a conspicuous negative linear correlation is observed between the minimum lithospheric thickness and the relative fluctuation in lithospheric thickness.This study posits that deep-seated thermal upwelling results in lithospheric undulations and extensional thinning in oil and gas basins.Concurrently,sustained deep-seated heat influences sedimentary materials in basins,creating favorable conditions for oil and gas generation.The insights derived from this study contribute to a quantitative understanding of the intricate relationships between deep lithospheric structures and oil and gas basins.These findings provide valuable guidance for future oil and gas exploration in the studied areas.
基金supported by the National Natural Science Foundation of China under contract Nos. 40576015, 40810069004 and 40821063by the key research project of Fujian Province under contract No. 2004N203by the Fujian demonstrating region of the "863" Project of the Ministry of Science and Technology of China
文摘Diurnal and semi-diurnal tides in the Taiwan Strait and its adjacent areas are calculated by using a two-dimensional finite-difference model. Compared with data of more than 20 observation stations around the Taiwan Strait, the model-produced results agree quite well with those of previous researches using observational data from coastal tidal gauge stations. According to the results, the co-tidal and co-range charts are given. Furthermore, the characteristics of 8 major tidal constituents have been uminated respectively. The result shows that: (1) The tide motion can be attributed to the interaction between the degenerative rotary tidal system in the north and the progressive tidal system in the south. (2) The southward and northward tidal waves of semi-diurnal tide converge in the middle of the Taiwan Strait while the diurnal tidal waves propagate southwestward through the Taiwan Strait and the Luzon Strait. (3) The maximum amplitude of semi-diurnal tides exists at the area between the Meizhou Bay and Xinghua Bay, and that of diurnal tides appears in the region to the east of the Leizhou Peninsula, (4) The patterns of co-tidal and co-range charts of N2, K2 and P1, Q1 tidal constituents are similar to those of M2, S2 and K1 O1 tidat constituents, respectively
文摘The formation process of the Dianqiangui basin, a special basin, occurred after the Caledonian orogeny, in the south of Guizhou, the west of Guangxi and the southeast of Yunnan, experienced three periods: it began in the Devonian, persisted in the Carboniferous, and became fiercer in the Permian. Controlled by syndepositional fault-zones, varieties of isolated carbonate platforms, large and small, were developed in the background of a deep-water basin, namely, an inter-platform ditch. And a special paleogeographical Late Paleozoic pattern marked by “platform-basin-hill-trough” was produced in both the Dianqiangui basin and its adjacent areas. Affected by regional tectonic activities and the global changes in the sea level, the platform carbonates and coal measures superimposed each other cyclically on the attached platform. The reef-building on the isolated platform and the margin of the attached platform corresponds to the development of the shale succession in the deep-water basin. All of these elementary characteristics reflect a regular and sophisticated filling succession of the Dianqiangui basin, a result of the dual controls of the regionally tectonic activities and the eustacy. Based on the two elementary features of the third-order sequences, i.e. the regularity of sedimentary-facies succession in space and the simultaneity of environmental changes in time, 25 third-order sequences could be discerned in the Upper Paleozoic strata in the Dianqiangui basin and its adjacent areas. On the basis of the two kinds of facies-changing surfaces and the two kinds of diachronisms in stratigraphic records, the regional Late Paleozoic sequence-stratigraphic framework in the Dianqiangui basin and its adjacent areas can be established. There are two types of facies-changing surfaces and two types of diachronisms in stratigraphic records: the static type, a result of the change in sedimentary facies in space, and the dynamic type, a result of the change in time. These two types of facies-changing surfaces led to the generation of the two types of diachronisms: the diachronism of facies-changing surfaces that was formed by the static facies-changing surfaces, and the diachronism of punctuated surfaces that was formed by the dynamic facies-changing surfaces. The two types of facies-changing surfaces and the two types of diachronisms in stratigraphic records are the key to the establishment of the sequence-stratigraphic framework. The sequence boundaries could be divided geologically into four types: tectonic unconformity, sedimentary unconformity, drowned unconformity and their correlative surfaces. All of these four types can be further grouped into exposed punctuated surfaces and deepened punctuated surfaces. The tectonic unconformity is similar to Type Ⅰ sequence boundary, and the sedimentary unconformity is similar to Type Ⅱ sequence boundary defined by Vail et al.. In terms of sequence stratigraphy, the tectonic unconformities of the Ziyun movement, the Qiangui epeirogeny and the Dongwu revolution as well as the drowned unconformity in the transitional period from the Permian to the Triassic can be systematically defined and their geological characteristics are briefly presented.
文摘Continental China has moved dextral Eastward since Cenozoic time,driven by the collision of the Indian with the Eurasian plate.Evidence for this comes from landscape evolution,the distribution of earthquake epicenters,Cenozoic sedimentary and volcanic rocks,and the measurement of GPS velocity vectors,the distribntion of crustal stress,paleomagnetic data,and deep mantle structure,among others.This movement commenced around 40 Ma,coupled with thickened lithosphere and widespread stress release along strikeslip faults that bound the continental Chinese block.Because of continued Northward subduction of the Indian plate,manifestation of the dextral movement has intensified since 25 Ma.Far-reaching effects include extensive strike-slip movement on the Tan-Lu fault in Eastern China,formation of the Dabie ultrahigh pressure metamorphic terrane,extensive thrust faults in East China,delamination and thickening of the lithosphere of South China,a possible tectonic doubling of the Middle-Lower Yangtze Valley metallogenic belt,and the formation of the Japan,Huanghai (East China),and South China Sea.
基金The Scientific and Technological Project of CNOOC Research Institute Co.,Ltd.,under contract No.CCL2021RCPS0167KQNthe Fundamental Research Fund for the Central Universities,CHD,under contract No.300102261717。
文摘Owing to the strategic significance of national oil and gas resources,their exploration and production must be prioritized in China.Oil and gas resources are closely related to deep crustal structures,and Moho characteristics influence oil and gas distribution.Therefore,it is important to study the relationship between the variation of the Moho surface depth undulation and hydrocarbon basins for the future prediction of their locations.The Moho depth in the study area can be inverted using the Moho depth control information,the Moho gravity anomaly,and the variable density distribution calculated by the infinite plate.Based on these results,the influences of Moho characteristics on petroleum basins were studied.We found that the Moho surface depth undulation deviation and crustal thickness undulation deviation in the hydrocarbon-rich basins are large,and the horizontal gradient deviation of the Moho surface shows a positive linear relationship with oil and gas resources in the basin.The oil-bearing mechanism of the Moho basin is further discussed herein.The Moho uplift area and the slope zone correspond to the distribution of oil and gas fields.The tensile stress produced by the Moho uplift can form tensile fractures or cause tensile fractures on the surface,further developing into a fault or depression basin that receives deposits.The organic matter can become oil and natural gas under suitable chemical and structural conditions.Under the action of groundwater or other dynamic forces,oil and natural gas are gradually transported to the uplift or the buried hill in the depression zone,and oil and gas fields are formed under the condition of good caprock.The research results can provide new insights into the relationship between deep structures and oil and gas basins as well as assist in the strategic planning of oil and gas exploration activities.
文摘Based on the CTD data obtained in the southern Taiwan Strait and its adjacent areas in August and September of 1994, the distributional features of the temperature and salinity in the studied area have been analyzed in detail. The results are as follows: (1) There are two low temperature and high salinity regions in the nearshore area between Dongshan and Shantou and in the southeastern Taiwan Shoal, respectively, which may be caused by upwellings. (2) There exists a cold eddy in the northwestern sea area and a warm eddy with two high temperature cores in the eastern sea area of the Dongsha Islands, which are related to the anti-cyclonic turning of the seawater near the Dongsha Islands. (3) A westward high temperature and high salinity water tongue extends through the northern Luzon Strait and reaches the sea areas near the Dengsha Islands and southern Taiwan Strait.
基金National Program on Key Basic Projects(2004CB418406)Social Commonweal Research Project of the Ministry ofScience and Technology(2004DIA3J010)Joint Seismological Science Foundation of China(106016).
文摘In this paper, we collect 6 361 waveform data to calculate the shear wave splitting parameters from a regional seismic network of 22 digital stations in Yunnan and its adjacent area from July 1999 to June 2005. By using the cross-correlation method, 64 splitting events of 16 stations are processed. We also collect the splitting results of eight earthquake sequences to present the characteristics of shear wave splitting in Yunnan and its adjacent areas. The orientations of maximum principal compressive stress of three sub-regions in this area are derived from the CMT focal mechanism solutions of 43 moderate-strong earthquakes provided by Harvard University by the P axis azimuth-averaging method. The principal strain rate at each observatory is deduced from the observations of Crustal Movement Observation Network of China during the period from 1999 to 2004. In addition, the data of Pn aniso- tropy and SKS splitting of Yunnan and its adjacent areas are also collected. We have discovered from this study that the continental lithosphere, as a main seismogenic environment for strong earthquake, can be divided into blocks laterally; the mechanical behavior of lithosphere varies with depth and can be divided into different layers in the vertical orientation; the information of crustal deformation obtained from GPS might be affected by the type of blocks, since there are different types of active blocks in Yunnan and its adjacent areas; the shear wave splitting in this region might be affected mainly by the upper crust or even the surface tectonics.
基金State Natural Science Foundation of China (49734150).
文摘3-D velocity structure of P wave in the upper mantle beneath southwestern China and its adjacent areas (10°N [similar to] 36°N, 70°E [similar to] 110°E) down to the depth of 400 km has been studied by using 80 974 P-wave first arrival times recorded at 165 stations from 7 053 events both within the studying areas, selected from the ISC bulletin and the Bulletin of China and NEIC fundamental seismic network. With a resolution of grid spacing of 2°×2°, the velocity heterogeneity on the horizontal profile is obvious though it attenuates with the depth increasing. On the vertical profiles of velocity along the latitude of 16°N and 24°N, the collision and extrusion of India plate to Eurasia plate is displayed, and a remarkable velocity difference between India plate and Eurasia plate is shown. In the vertical profile along the longitude of 90°E, the subducting of India plate northward beneath Eurasia plate (Tibet plateau) is also obvious. On the horizontal profile at the depth of 90 km, a slow velocity stripe from Myitkyina, Myanmar to Donghai, Vietnam seems to be related to Honghe fault belt. An illustration method of describing the resolution more directly and exactly has been proposed and utilized in this paper.
基金The National Natural Science Foundation of China under contract No.42006198the Open Fund of the Key Laboratory of Marine Geology and Environment,Chinese Academy of Sciences under contract No.MGE2020KG02.
文摘Enderby Land in East Antarctica and its adjacent areas,which are closely related to the Indian Plate in their geological evolution,have become one of the key zones for studies on how the Antarctic continent evolves.Based on the isostasy and flexure theories of the lithosphere and using the CRUST1.0 model as the depth constraint,this paper uses the gravity field model EIGEN-6C4 and topographic data to calculate the isostatic gravity anomalies of Enderby Land and its adjacent areas.Then,the crustal thickness of the study area is calculated,and three comprehensive geophysical interpretation profiles that vertically span the study area are plotted.The results show that the flexural isostatic gravity anomalies in Enderby Land and its adjacent areas are closely related to the regional tectonic setting,and the anomalies in different regions differ substantially,ranging from−50×10^(−5)m/s^(2)to 85×10^(−5)m/s^(2).A zone of high isostatic gravity anomalies(30×10^(−5)−80×10^(−5)m/s^(2))is distributed outside the Cooperation Sea and Queen Maud Land,which may be plate remnants generated by early rifting.Except for the Kerguelen Plateau,which was formed by a hotspot and has a crustal thickness of 15 km,the thickness of the oceanic crust in other parts of the study area changes slightly by approximately 4–9 km,with the thinnest part being in Enderby Basin.The thickness of the inland crust along the coastline increases with the elevation,with the maximum thickness reaching 34 km.The isostatic gravity anomalies corresponding to the zone of high magnetic anomalies along the continental margin of Queen Maud Land are negative and small,with an isostatic adjustment trend indicating Moho surface uplift,and those on the edge of central Enderby Land are near zero,approaching the isostatic state,which may be caused by the magmatism at the early stage of rifting.The continental-oceanic boundary should be close to the contour line of the crustal thickness 10–12 km on the outer edge of the coastline.
基金sponsored by the Earth quake Science and Technology Spark Plan(XH14051YSX)the Natural Science Foundation of Ningxia,China(NZ15213)
文摘In this article,the vertical components of the continuous waveform data of 90 seismic stations in Ningxia and its adjacent regions recorded from January 2012 to December 2013 are used to obtain the Rayleigh surface wave group velocity dispersion images in the study area( 101°- 112°E,31°-42°N) according to the method of noise imaging,with period between 6s - 50s and resolution of 0.5°. The Yinchuan basin in the 6s - 26 s period obviously shows a low velocity anomaly,which is not uniform and has a tendency to gradually weaken; the Guanzhong Basin in 6 s-22s shows a strip of low velocity anomaly and demonstrates a transverse inhomogeneity,where velocity in the southeast is slightly faster than that in the northwest. In the 30s - 50s period it shows that in the Yinchuan graben basin and its southern area,there is a large low velocity anomaly area,which moves from northeast to southwest. It shows that between the main active tectonic zones,like mountains and basins,there are obvious geomorphologic boundaries. For example,the deep fault near Liupan Mountain is the dividing line between two large tectonic units of eastern and western of China. The inversion results have good correlation with the geological structure and the stratigraphic landform. The results are consistent with the results of artificial seismic section tomography across the basin. It provides an important basis for the dynamics of active tectonic zones and the mechanism of earthquake occurrence in this area.
基金jointly sponsored by the“Science for Earthquake Resilience(1730801)the Youth Fund Program of Earthquake Administration of Jiangsu Province,China(201405)
文摘Based on 49 digital seismograms recorded by 73 seismic stations in the Jiangsu Telemetered Seismic Network,the paper uses Atkinson's method to calculate the inelastic attenuation coefficient of the Jiangsu area. We find that the frequency-dependent Q in the Jiangsu region is Q( f) = 272. 1·f^(0. 5575). We also use Moya's method to invert the 63 stations' site responses. The results show that the site responses of the 25 stations in Jiangsu are approximately 1 at a range between 1Hz and 20 Hz, which is consistent with their basements on rocks. The response curves of the site responses of the 14 underground stations are similar to each other. Their site responses show an amplification at low frequencies and minimization at high frequencies. The calculation of the Brune model on the waveform data of M_L≥2. 5 earthquakes from Jiangsu Digital Seismic Network between October 2010 and May 2015 in terms of seismic source parameters of 58 seismic waves shows that there are good correlations between seismic magnitude and other source parameters such as seismic moment, source radius and corner frequency, while the correlations between seismic magnitude and stress drop,and stress drop and source radius are not so good.
基金funded by the Seismic Situation Tracing Orientation Task,China Earthquake Administration(2014020120)the Science and Technology Support Program of Hebei Province(2014020120)
文摘We collected waveforms of a teleseismic event which occurred from January 2007 to October 2011 from 174 broadband seismic stations deployed in Hebei and its adjacent areas. Using the H-k stacking method,the average thickness and Poisson's ratio of the crust are acquired. In order to obtain reliable receiver functions, the broadband seismograms of 488 teleseismic earthquakes occurring in the epicentral distance range from 30° to 90° with magnitudes larger than Mb6. 0 are collected. The results show that crustal thickness have conspicuous lateral heterogeneity and have good correlation to the regional geological tectonic features. Poisson ratio's value is equated with the global models estimates which fluctuate at about 0. 25. Crustal thickness has positive correlation to the topography and the Taihang Mountains form the transition zone of thick and thin crustal thickness. There is an obvious difference in crustal thickness beneath the north and south of the Shanxi earthquake zone and the Poisson ratio of Datong,Ningwu and Anze basins is greater than 0. 3. The crustal thickness beneath the Zhang-Bo( Zhangjiakou-Bohai Sea)earthquake zone decreases from west to north and its Poisson ratio shows conspicuous lateral heterogeneity. The thin crust and low Poisson ratio in the Huabei( North China)basin may correlate with the delamination of the North China craton.
文摘The cell density, species composition and distribution of phytoplankton, and their relations to environmental factors in Prydz Bay and its adjacent sea area, Antarctica (69degrees-77degrees E, 62degrees-70degrees S) during the austral summer of 1998/1999 were investigated. A total of 48 taxa belonging to 21 genera of phytoplankton in the sea area were identified. The average cell density of phytoplankton was 22.46 x 10(3) cells/dm(3), of which diatoms were predominant (84.51%). The highest cell density of phytoplankton occurred in Prydz Bay and the adjacent continental shelf where the average cell density was 46.03 x 10(3) cells/dm(3). The lowest cell density (3.34 x 10(3) cells/dm(3)) occurred in deep sea area. The dominant species of phytoplankton was Fragilariopsis curta. The vertical distribution of phytoplankton density was highest in the upper part of 0-50 in depth, lower in 100 in and lowest in 150 in. The species composition and cell density of phytoplankton were influenced by water circulation. The cell density was positively correlated with water temperature and salinity, and negatively correlated with the concentration of nutrients.
基金National Basic Research Program of China, No.2002CB412401 National Natural Science Foundation of China, No.40506022+1 种基金 No.40506013 Natural Science Foundation of Jiangsu Province, No.BK2006131
文摘The spatial distribution patterns of total organic carbon and total nitrogen show significant correlations with currents of the East China Sea Shelf. Corresponding to distributions of these currents, the study area could be divided into four different parts. Total organic carbon, total nitrogen, and organic carbon and nitrogen stable isotopes in sediments show linear correlations with mean grain size, respectively, thus "grain size effect" is an important factor that influences their distributions. C/N ratios can reflect source information of organic matter to a certain degree. In contrast, nitrogen stable isotope shows different spatial distribution patterns with C/N and organic carbon stable isotope, according to their relationships and regional distributions. The highest contribution (up to 50%) of terrestrial organic carbon appears near the Changjiang Estuary with isolines projecting towards northeast, indicating the influence of the Changjiang dilution water. Terrestrial particulate organic matter suffers from effects of diagenesis, benthos and incessant inputting of dead organic matter of plankton, after depositing in seabed. Therefore, the contribution of terrestrial organic carbon to particulate organic matter is obviously greater than that to organic matter in sediments in the same place.
文摘On the basis of the data of zooplankton biomass and three major taxa—— Copepoda, Chaetognatha andSiphonophora of May-June 1986, July-August and December 1987, the distributional patterns and the indicator species of zooplankton in the Kuroshio and adjacent waters of the East China Sea are preliminarily studied. The results are as follows:The horizontal distribution of zooplankton biomass and the abundance of copepods, chaetognaths and siphonophores arecurred in the continent area northwest of Taiwan and the south-centre section of the East China Sea continent, which are the mix front of different waters. Zooplankton in the water area inside of Ryukyu Islands presented low abundance and high diversity. There are clear seasonal variations in zooplankton biomass and abundance in the study area. The strength or weakness of different water masses and fronts is the basic reason for the variations of zooplankton biomass and abundance.The species composition of zooplankton in the study area is complex and varies, however, the tropic oceanic species predominates overwhelmingly. The distribution of different ecotype species evidences the distribution of different water masses and the state of mixture. The indicator species of each water mass are listed in the paper so as to provide grounds for the variation of currents in the Kuroshio area.The temperature and salinity of sea water are important factors affecting zooplankton distribution, composition and diversity , however the role of salinity is major. With the replacement of one season by another, the correlative levels of temperature and salinity to various zooplankton taxa are more or less significant.
基金supported by the National Science Foundation of China(grant No.41476053)the China Geological Project(grants No.GZH201400214 and DD20160153)
文摘Basin-mountain coupling is a key issue for basin formation and evolution. The analysis of basin-mountain coupling process, as well as quantitative or semiquantitative restoration of prototype basin and the evolution of continental margin, can be used to interpret the geological process of basin-range conversion and reconstruct early prototype basins, which is a difficult and leadin~ scientific oroblem of basin research.
文摘Through the investigation on radioactive activities of water, sediment and some marine organismsin the Zhujiang Estuary, adjacent sea area and the distributary mouths of the Zhujiang River, activities of total α. radioactivity, total β radioactivity, artificial radioactive 90Srand 157Cs, and factors inflencing the distribution and the content of U in seawater are studied.The mainly radioactive pollution substances and their sources in the sea area are studied by γ spectra obtained from sediment in the sea area. The results show that the main radioactivity substances are natural radioactivity U,Th series and 40K. which were produced by the modern industry and transported into the sea through the main current of the Zhujiang River.
基金This project was sponsored by China Seismological Bureau. Contribution No.RCEG98007, Research Center of Exploration Geophysics, CSB, Zhengzhou, China.
文摘1-D and 2-D calculation and interpretation are carried out with the DSS data from the western section of Heze-Changzhi profile and the southern section of Zhengzhou-Jinan profile. 2-D velocity structure is determined in Tangyin graben and its adjacent area. The result shows that velocity structure of the crust and upper mantle is obviously different in vertical and lateral directions. Crustal thickness varies apparently in this area, and there are local low velocity blocks in the interior crust. The swelling M-discontinuity corresponds to Tangyin graben and Moho depth at the highest swelling position is 31 km. Toward the east, its depth gradually increases to 32 km in Xunxian swelling; toward the west, M-discontinuity becomes a steep zone at the piedmont uplift of Taihang Mountain and reaches 40 km at depth near Changzhi. Through analyzing the relationship between historical earthquakes and deep structure in North China, we infer that seismic risk exists in Tangyin graben and its adjacent area.
基金funded by the key project of National Natural Science Foundation of China(Grant No.40839909 and 41074062)
文摘Using the broadband seismic data of the regional stations in the Sichuan Digital Seismic Network and the mobile seismic stations in this region,the receiver function inversion method was adopted to study the characteristics of crustal flow and dynamic effects in Sichuan and adjacent areas. The results show that: Velocity in the crust and upper mantle of the Sichuan basin is significantly higher than that beneath the eastern margin of the Qinghai-Tibetan plateau. The velocity v_S is from 3. 6 to 3. 8km / s in the crust and4. 5- 4. 8km / s in the upper mantle beneath the basin,and there is no low-velocity layer in the crust. The lithology shows a hard block. The v_S velocity in the eastern margin of the Qinghai-Tibetan plateau is lower,with average v_Sof 3. 0- 3. 4km / s in the mid crust and4. 0- 4. 5km / s in the upper mantle. Low-velocity layers are distributed widely in the crust,most of which are in the mid crust at a depth of 20km- 40 km,and there are also a few low-velocity layers appearing in the upper crust at depths of 10km- 20 km and the lower crust at depths of 40km- 60 km. Affected by the northward pushing of the Indian plate,the eastward movement of the eastern margin of the Qinghai-Tibetan plateau is blocked by the hard Sichuan basin,producing a southward and southeastward component.Such movement process is produced by the complicated forces acting in this area. Just under the action of these forces, the eastern margin of the Qinghai-Tibetan plateau becomes a region with complicated geology and intensive earthquake activity. Obstructed by the hard Sichuan basin,the low-velocity crustal flow is delaminated and split into two or three upward and downward tributaries. The upward flow intruded into the upper crust,causing uplift of the earths urface,forming mountain crests; the downward flow intruded into the lower crust and upper mantle,resulting in thickening of the crust and depression of the Moho. The crustal flow in the eastern margin of the Qinghai-Tibetan plateau is mainly distributed along the active faults. The crustal flow flows out from the Qiangtang block in the middle part of the eastern margin of the Qinghai-Tibetan plateau,the mainstream flows along the NW-SE trending Xianshuihe fault zone,then turns NS and flows to the south along the Anninghe and Xiaojiang faults. There is another crustal flow in the north of the study area,flowing in the NE and E-W directions to the Longmenshan faults.