Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the sca...Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the scattering targets. Therefore, the polarimetric SAR has more advantages for oil spill detection on the sea surface. As a crucial step in the oil spill detection, a feature extraction directly influences the accuracy of oil spill discrimination. The polarimetric features of sea oil spills, such as polarimetric entropy, average scatter angle, in the full polarimetric SAR images are analyzed firstly. And a new polarimetric parameter P which reflects the proportion between Bragg and specular scattering signals is proposed. In order to investigate the capability of the polarimetric features for observing an oil spill, systematic comparisons and analyses of the multipolarization features are provided on the basis of the full polarimetric SAR images acquired by SIR-C/X-SAR and Radarsat-2. The experiment results show that in C-band SAR images the oil spills can be detected more easily than in L-band SAR images under low to moderate wind speed conditions. Moreover, it also finds that the new polarimetric parameter is sensitive to the sea surface scattering mechanisms. And the experiment results demonstrate that the new polarimetric parameter and pedestal height perform better than other polarimetric parameters for the oil spill detection in the C-band SAR images.展开更多
Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing st...Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.展开更多
Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian prod...Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating singleangle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm.展开更多
Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,du...Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images.展开更多
Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection metho...Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.展开更多
This letter studies on the detection of texture features in Synthetic Aperture Radar (SAR) images. Through analyzing the feature detection method proposed by Lopes, an improved texture detection method is proposed, wh...This letter studies on the detection of texture features in Synthetic Aperture Radar (SAR) images. Through analyzing the feature detection method proposed by Lopes, an improved texture detection method is proposed, which can not only detect the edge and lines but also avoid stretching edge and suppressing lines of the former algorithm. Experimental results with both simulated and real SAR images verify the advantage and practicability of the improved method.展开更多
Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillanc...Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillance of shipping, such as ship traveling direction and speed. A novel approach to the detection of ship wakes in SAR images based on frequency domain is provided in this letter. Compared with traditional Radon-based approaches, computation is reduced by 20%-40% without losing nearly any of detection performance. The testing results using real data and simulation of synthetic SAR images test the algorithm's feasibility and robustness.展开更多
针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目...针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。展开更多
This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)...This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)technologies.A key research question addressed is whether displacement trends captured by a radio-frequency“mobile”d-GNSS network compare with the spatial and temporal patterns in activity indicated by satellite interferometric synthetic aperture radar(InSAR)and unmanned aerial vehicle(UAV)photogrammetry.Field testing undertaken at Ripley Landslide,near Ashcroft in south-central British Columbia,Canada,demonstrates the applicability of new geospatial technologies to monitoring ground control points(GCPs)and railway infrastructure on a landslide with small and slow annual displacements(<10 cm/yr).Each technique records increased landslide activity and ground displacement in late winter and early spring.During this interval,river and groundwater levels are at their lowest levels,while ground saturation rapidly increases in response to the thawing of surficial earth materials,and the infiltration of snowmelt and runoff occurs by way of deep-penetrating tension cracks at the head scarp and across the main slide body.Research over the last decade provides vital information for government agencies,national railway companies,and other stakeholders to understand geohazard risk,predict landslide movement,improve the safety,security,and resilience of Canada’s transportation infrastructure;and reduce risks to the economy,environment,natural resources,and public safety.展开更多
基金The National Natural Science Foundation of China under contract Nos 41576170 and 41376179the Public Science and Technology Research Funds Projects of Ocean(Ocean University of China) under contract No.2013418025-2
文摘Compared with single-polarized synthetic aperture radar (SAR) images, full polarimetric SAIl images contain not only geometrical and backward scattering characteristics, but also the polarization features of the scattering targets. Therefore, the polarimetric SAR has more advantages for oil spill detection on the sea surface. As a crucial step in the oil spill detection, a feature extraction directly influences the accuracy of oil spill discrimination. The polarimetric features of sea oil spills, such as polarimetric entropy, average scatter angle, in the full polarimetric SAR images are analyzed firstly. And a new polarimetric parameter P which reflects the proportion between Bragg and specular scattering signals is proposed. In order to investigate the capability of the polarimetric features for observing an oil spill, systematic comparisons and analyses of the multipolarization features are provided on the basis of the full polarimetric SAR images acquired by SIR-C/X-SAR and Radarsat-2. The experiment results show that in C-band SAR images the oil spills can be detected more easily than in L-band SAR images under low to moderate wind speed conditions. Moreover, it also finds that the new polarimetric parameter is sensitive to the sea surface scattering mechanisms. And the experiment results demonstrate that the new polarimetric parameter and pedestal height perform better than other polarimetric parameters for the oil spill detection in the C-band SAR images.
基金supported by the National Natural Science Foundation of China(41774006)the Comparative Study of Geo-environment and Geohazards in the Yangtze River Delta and the Red River Delta Projectthe Shanghai Science and Technology Development Foundation(20dz1201200)。
文摘Constrained by complex imaging mechanism and extraordinary visual appearance,change detection with synthetic aperture radar(SAR)images has been a difficult research topic,especially in urban areas.Although existing studies have extended from bi-temporal data pair to multi-temporal datasets to derive more plentiful information,there are still two problems to be solved in practical applications.First,change indicators constructed from incoherent feature only cannot characterize the change objects accurately.Second,the results of pixel-level methods are usually presented in the form of the noisy binary map,making the spatial change not intuitive and the temporal change of a single pixel meaningless.In this study,we propose an unsupervised man-made objects change detection framework using both coherent and incoherent features derived from multi-temporal SAR images.The coefficients of variation in timeseries incoherent features and the man-made object index(MOI)defined with coherent features are first combined to identify the initial change pixels.Afterwards,an improved spatiotemporal clustering algorithm is developed based on density-based spatial clustering of applications with noise(DBSCAN)and dynamic time warping(DTW),which can transform the initial results into noiseless object-level patches,and take the cluster center as a representative of the man-made object to determine the change pattern of each patch.An experiment with a stack of 10 TerraSAR-X images in Stripmap mode demonstrated that this method is effective in urban scenes and has the potential applicability to wide area change detection.
文摘Coherent change detection(CCD) is an effective method to detect subtle scene changes that occur between temporal synthetic aperture radar(SAR) observations. Most coherence estimators are obtained from a Hermitian product based on local statistics. Increasing the number of samples in the local window can improve the estimation bias, but cause the loss of the estimated images spatial resolution. The limitations of these estimators lead to unclear contour of the disturbed region, and even the omission of fine change targets. In this paper, a CCD approach is proposed to detect fine scene changes from multi-temporal and multi-angle SAR image pairs. Multi-angle CCD estimator can improve the contrast between the change target and the background clutter by jointly accumulating singleangle alternative estimator results without further loss of image resolution. The sensitivity of detection performance to image quantity and angle interval is analyzed. Theoretical analysis and experimental results verify the performance of the proposed algorithm.
基金Aeronautical Science Foundation of China(No.2018ZC51022)。
文摘Convolutional Neural Networks(CNNs)have recently attracted much attention in the ship detection from Synthetic Aperture Radar(SAR)images.However,compared with optical images,SAR ones are hard to understand.Moreover,due to the high similarity between the man-made targets near shore and inshore ships,the classical methods are unable to achieve effective detection of inshore ships.To mitigate the influence of onshore ship-like objects,this paper proposes an inshore ship detection method in SAR images by using hybrid features.Firstly,the sea-land segmentation is applied in the pre-processing to exclude obvious land regions from SAR images.Then,a CNN model is designed to extract deep features for identifying potential ship targets in both inshore and offshore water.On this basis,the high-energy point number of amplitude spectrum is further introduced as an important and delicate feature to suppress false alarms left.Finally,to verify the effectiveness of the proposed method,numerical and comparative studies are carried out in experiments on Sentinel-1 SAR images.
基金supported by the National Natural Science Foundation of China (42074022)。
文摘Synthetic aperture radar(SAR) is able to detect surface changes in urban areas with a short revisit time, showing its capability in disaster assessment and urbanization monitoring.Most presented change detection methods are conducted using couples of SAR amplitude images. However, a prior date of surface change is required to select a feasible image pair. We propose an automatic spatio-temporal change detection method by identifying the temporary coherent scatterers. Based on amplitude time series, χ^(2)-test and iterative single pixel change detection are proposed to identify all step-times: the moments of the surface change. Then the parameters, e.g., deformation velocity and relative height, are estimated and corresponding coherent periods are identified by using interferometric phase time series. With identified temporary coherent scatterers, different types of temporal surface changes can be classified using the location of the coherent periods and spatial significant changes are identified combining point density and F values. The main advantage of our method is automatically detecting spatio-temporal surface changes without prior information. Experimental results by the proposed method show that both appearing and disappearing buildings with their step-times are successfully identified and results by ascending and descending SAR images show a good agreement.
基金Supported by the University Doctorate Special Research Fund(No.20030614001)
文摘This letter studies on the detection of texture features in Synthetic Aperture Radar (SAR) images. Through analyzing the feature detection method proposed by Lopes, an improved texture detection method is proposed, which can not only detect the edge and lines but also avoid stretching edge and suppressing lines of the former algorithm. Experimental results with both simulated and real SAR images verify the advantage and practicability of the improved method.
文摘Moving ships produce a set of waves of "V' pattern on the ocean. These waves can often be seen by Synthetic Aperture Radar (SAR). The detection of these wakes can provide important information for surveillance of shipping, such as ship traveling direction and speed. A novel approach to the detection of ship wakes in SAR images based on frequency domain is provided in this letter. Compared with traditional Radon-based approaches, computation is reduced by 20%-40% without losing nearly any of detection performance. The testing results using real data and simulation of synthetic SAR images test the algorithm's feasibility and robustness.
文摘针对SAR图像检测船舶任务中的目标小、近岸样本目标检测困难等问题,文章提出一种名为长短路特征融合网络(Long and Short path Feature Fusion Network,LSFF-Net)的船舶检测网络。该网络通过长短路特征融合模块有效协调了大目标与小目标检测,避免小目标特征信息的丢失。网络中应用结构重参数化结构提高了模块学习能力。为了满足多尺度目标检测,加入特征金字塔网络,融合多尺度特征。为了应对近岸样本目标检测,设计数据重分配算法,提高了对近岸样本目标的检测精度。实验结果表明:在公开数据集检测时,算法的平均精度(Average Precision,AP)达到97.50%,优于主流目标检测算法。该方法为提高SAR图像中小目标和近岸样本目标检测精度提供了新的实现方案。
基金The Government of Canada-through the Ministry of Transport and Ministry of Natural Resources-funded this research。
文摘This paper presents a novel approach to continuously monitor very slow-moving translational landslides in mountainous terrain using conventional and experimental differential global navigation satellite system(d-GNSS)technologies.A key research question addressed is whether displacement trends captured by a radio-frequency“mobile”d-GNSS network compare with the spatial and temporal patterns in activity indicated by satellite interferometric synthetic aperture radar(InSAR)and unmanned aerial vehicle(UAV)photogrammetry.Field testing undertaken at Ripley Landslide,near Ashcroft in south-central British Columbia,Canada,demonstrates the applicability of new geospatial technologies to monitoring ground control points(GCPs)and railway infrastructure on a landslide with small and slow annual displacements(<10 cm/yr).Each technique records increased landslide activity and ground displacement in late winter and early spring.During this interval,river and groundwater levels are at their lowest levels,while ground saturation rapidly increases in response to the thawing of surficial earth materials,and the infiltration of snowmelt and runoff occurs by way of deep-penetrating tension cracks at the head scarp and across the main slide body.Research over the last decade provides vital information for government agencies,national railway companies,and other stakeholders to understand geohazard risk,predict landslide movement,improve the safety,security,and resilience of Canada’s transportation infrastructure;and reduce risks to the economy,environment,natural resources,and public safety.