Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP/LASG GOALS version 4) have been carried out to study the global warming, wit...Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP/LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO, doubling the global temperature increases about 1.65 degreesC. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2.1 degreesC and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25 degreesN with reduced precipitation in the tropical western Pacific.展开更多
Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model(IAP / LASG GOALS version 4) have been carried out to study the global warming, wi...Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model(IAP / LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO2 doubling the global temperature increases about 1.65℃. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2.1 ℃ and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25°N with reduced precipitation in the tropical western Pacific.展开更多
Numerous emerging development areas worldwide are receiving attention;however,current research on land use change simulation primarily concentrates on cities,urban clusters,or larger scales.Moreover,there is a limited...Numerous emerging development areas worldwide are receiving attention;however,current research on land use change simulation primarily concentrates on cities,urban clusters,or larger scales.Moreover,there is a limited focus on understanding the impact of regional connectivity with surrounding cities and policy factors on land use change in these new areas.In this context,the present study utilizes a cellular automata(CA)model to investigate land use changes in the case of Nansha New District in Guangzhou,China.Three scenarios are examined,emphasizing conventional locational factors,policy considerations,and the influence of regional connectivity with surrounding cities.The results reveal several key findings:(1)Between 2015 and 2021,Nansha New District experienced significant land use changes,with the most notable shifts observed in cultivated land,water area,and construction land.(2)The comprehensive scenario exhibited the highest simulation accuracy,indicating that Nansha New District,as an emerging area,is notably influenced by policy factors and regional connectivity with surrounding cities.(3)Predictions for land use changes in Nansha by 2030,based on the scenario with the highest level of simulation accuracy,suggest an increase in the proportion of cultivated and forest land areas,alongside a decrease in the proportion of construction land and water area.This study contributes valuable insights to relevant studies and policymakers alike.展开更多
Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an applic...Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.展开更多
Diagnosis of changes in the winter stratospheric circulation in the Fifth Coupled Model Intercomparison Project (CMIP5) scenarios simulated by the Flexible Global Ocean-Atmosphere-Land System model, second version s...Diagnosis of changes in the winter stratospheric circulation in the Fifth Coupled Model Intercomparison Project (CMIP5) scenarios simulated by the Flexible Global Ocean-Atmosphere-Land System model, second version spectrum (FGOALS-s2), indicates that the model can generally reproduce the present climatology of the stratosphere and can capture the general features of its long-term changes during 1950-2000, including the global stratospheric cooling and the strengthening of the westerly polar jet, though the simulated polar vortex is much cooler, the jet is much stronger, and the projected changes are generally weaker than those revealed by observation data. With the increase in greenhouse gases (GHGs) effect in the historical simu- lation from 1850 to 2005 (called the HISTORICAL run) and the two future projections for Representative Concentration Pathways (called the RCP4.5 and RCP8.5 scenarios) from 2006 to 2100, the stratospheric response was generally steady, with an increasing stratospheric cooling and a strengthening polar jet ex- tending equatorward. Correspondingly, the leading oscillation mode, defined as the Polar Vortex Oscillation (PVO), exhibited a clear positive trend in each scenario, confirming the steady strengthening of the polar vortex. However, the positive trend of the PVO and the strengthening of the polar jet were not accompa- nied by decreased planetary-wave dynamical heating, suggesting that the cause of the positive PVO trend and the polar stratospheric cooling trend is probably the radiation cooling effect due to increase in GHGs. Nevertheless, without the long-term linear trend, the temporal variations of the wave dynamic heating, the PVO, and the polar stratospheric temperature are still closely coupled in the interannual and decadal time scales.展开更多
Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the so...Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.展开更多
The comparison of the underwater topographic data in recent four decades shows that main waterways of the radial sand ridges area in the southern Yellow Sea tend to gradually migrate southward(scour depth and southwa...The comparison of the underwater topographic data in recent four decades shows that main waterways of the radial sand ridges area in the southern Yellow Sea tend to gradually migrate southward(scour depth and southward extension of the main channels in Xiyang, southward approach of Lanshayang Waterway and Xiaomiaohong Waterway on South Flank). Although there are various hypotheses about the cause and mechanism of the overall southward migration of the radial sand ridges, no universal and reliable understanding has been obtained so far. The mechanism of this process becomes a challenging problem which serves a key issue in the morphodynamics of the radial sand ridges and the harbor construction in this area. On the basis of the shoreline positions and underwater terrains at different development stages of the Huanghe Delta coast in northern Jiangsu Province, China since the northward return of the Huanghe River and flowed into the Bohai Sea,combined with the tidal wave numerical simulation study, the characteristics and hydrodynamic changes of the tidal wave system in the southern Yellow Sea at different evolution stages are investigated. It is shown that due to the shoreline retreat and the erosion of underwater delta, tidal current velocity is enhanced, and the enhanced area gradually migrates southward. It is revealed that this southward migration of a large-scale regional hydrodynamic axis is possibly a dominant mechanism leading to the overall southward migration of the radial sand ridges.展开更多
To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based...To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.展开更多
Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological prote...Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological protection pattern of territorial space, which has important theoretical significance and application value. At present, most research on the identification, functional partitioning and pattern reconstruction of ecological space refers to the current ESFs and their structural information, which ignores the spatial-temporal dynamic nature of the comprehensive and dominant ESFs, and does not seriously consider the change simulation in the dominant ESFs of the future ecological space. This affects the rationality of constructing an ecological space protection pattern to some extent. In this study, we propose an ecological space delimitation method based on the dynamic change characteristics of the ESFs, realize the identification of the ecological space range in Qionglai City and solve the problem of ignoring the spatial-temporal changes of ESFs in current research. On this basis, we also apply the Markov-CA model to integrate the spatial-temporal change characteristics of the dominant ESFs, successfully realize the simulation of the spatial-temporal changes in the dominant ESFs in Qionglai City’s ecological space in 2025, find a suitable method for simulating ecological spatial-temporal changes and also provide a basis for constructing a reasonable ecological space protection pattern. This study finds that the comprehensive quantity of ESF and its annual rate of change in Qionglai City show obvious dynamics, which confirms the necessity of considering the dynamic characteristics of ESFs when identifying ecological space. The areas of ecological space in Qionglai city represent 98307 ha by using the ecological space identification method proposed in this study, which is consistent with the ecological spatial distribution in the local ecological civilization construction plan. This confirms the reliability of the ecological space identification method based on the dynamic characteristics of the ESFs. The results also show that the dominant ESFs in Qionglai City represented strong non-stationary characteristics during 2003–2019,which showed that we should fully consider the influence of the dynamics in the dominant ESFs on the future ESF pattern during the process of constructing the ecological spatial protection pattern. The Markov-CA model realized the simulation of spatial-temporal changes in the dominant ESFs with a high precision Kappa coefficient of above 0.95, which illustrated the feasibility of using this model to simulate the future dominant ESF spatial pattern. The simulation results showed that the dominant ESFs in Qionglai will still undergo mutual conversions during 2019–2025 due to the effect of the their non-stationary nature. The ecological space will still maintain the three dominant ESFs of primary product production, climate regulation and hydrological regulation in 2025, but their areas will change to 32793 ha, 52490 ha and 13024 ha, respectively. This study can serve as a scientific reference for the delimitation of the ecological conservation redline, ecological function regionalization and the construction of an ecological spatial protection pattern.展开更多
The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes.Conventional studies on land use simulation usually simplified the accessib...The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes.Conventional studies on land use simulation usually simplified the accessibility as proximities and adopted the grid-based simulation strategy,leading to the insufficiencies of characterizing spatial geometry of land parcels and simulating subtle land use changes among urban functional types.To overcome these limita-tions,an Accessibility-interacted Vector-based Cellular Automata(A-VCA)model was proposed for the better simulation of realistic land use change among different urban functional types.The accessibility at both local and zonal scales derived from actual travel time data was considered as a key driver of fine-scale urban land use changes and was integrated into the vector-based CA simulation process.The proposed A-VCA model was tested through the simulation of urban land use changes in the City of Toronto,Canada,during 2012-2016.A vector-based CA without considering the driving factor of accessibility(VCA)and a popular grid-based CA model(Future Land Use Simulation,FLUS)were also implemented for compar-isons.The simulation results reveal that the proposed A-VCA model is capable of simulating fine-scale urban land use changes with satisfactory accuracy and good morphological feature(kappa=0.907,figure of merit=0.283,and cumulative producer’s accuracy=72.83%±1.535%).The comparison also shows significant outperformance of the A-VCA model against the VCA and FLUS models,suggesting the effectiveness of the accessibility-interactive mechanism and vector-based simulation strategy.The proposed model provides new tools for a better simula-tion of fine-scale land use changes and can be used in assisting the formulation of urban and transportation planning.展开更多
基金National Natural Science Foundation of China! (No. 49875012)the National Project " Study on Short-range Climate Prediction S
文摘Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model (IAP/LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO, doubling the global temperature increases about 1.65 degreesC. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2.1 degreesC and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25 degreesN with reduced precipitation in the tropical western Pacific.
基金National Natural Science Foundation of China! (No. 49875012)the National Project " Study on Short-range Climate Prediction S
文摘Two simulations, one for the control run and another for the perturbation run, with a global coupled ocean-atmosphere-land system model(IAP / LASG GOALS version 4) have been carried out to study the global warming, with much detailed emphasis on East Asia. Results indicate that there is no climate drift in the control run and at the time of CO2 doubling the global temperature increases about 1.65℃. The GOALS model is able to simulate the observed spatial distribution and annual cycles of temperature and precipitation for East Asia quite well. But, in general, the model underestimates temperature and overestimates rainfall amount for regional annual average. For the climate change in East Asia, the temperature and precipitation in East Asia increase 2.1 ℃ and 5% respectively, and the maximum warming occurs at middle-latitude continent and the maximum precipitation increase occurs around 25°N with reduced precipitation in the tropical western Pacific.
基金This research received was funded by the National Natural Science Foundation of China(Grant No.42271217)the Guangdong Planning Office of Philosophy and Social Science(Grant No.GD21CGL15).
文摘Numerous emerging development areas worldwide are receiving attention;however,current research on land use change simulation primarily concentrates on cities,urban clusters,or larger scales.Moreover,there is a limited focus on understanding the impact of regional connectivity with surrounding cities and policy factors on land use change in these new areas.In this context,the present study utilizes a cellular automata(CA)model to investigate land use changes in the case of Nansha New District in Guangzhou,China.Three scenarios are examined,emphasizing conventional locational factors,policy considerations,and the influence of regional connectivity with surrounding cities.The results reveal several key findings:(1)Between 2015 and 2021,Nansha New District experienced significant land use changes,with the most notable shifts observed in cultivated land,water area,and construction land.(2)The comprehensive scenario exhibited the highest simulation accuracy,indicating that Nansha New District,as an emerging area,is notably influenced by policy factors and regional connectivity with surrounding cities.(3)Predictions for land use changes in Nansha by 2030,based on the scenario with the highest level of simulation accuracy,suggest an increase in the proportion of cultivated and forest land areas,alongside a decrease in the proportion of construction land and water area.This study contributes valuable insights to relevant studies and policymakers alike.
基金funded by CEA,EDF and Framatomefinancial and scientific support of CEA Cadarache.
文摘Considering phase changes associated with a high-temperature molten material cooled down from the outside,this work presents an improvement of the modelling and the numerical simulation of such processes for an application pertaining to the safety of light water nuclear reactors.Postulating a core meltdown accident,the behaviour of the core melt(aka corium)into a steel vessel is of tremendous importance when evaluating the vessel integrity.Evaluating correctly the heat fluxes requires the numerical simulation of the interaction between the liquid material and its solid counterpart which forms during the solidification process,but also may melt back.To simulate this configuration,encoun-tered in various industrial applications,one considers a bi-phase model constituted by a liquid phase in contact and interaction with its solid phase.The liquid phase may solidify in presence of low energetic source,while the solid phase may melt due to an intense heat flux from the high-temperature liquid.In the frame of the in-house legacy code,several simplifying assumptions(0D multi-layer discretization,instantaneous heat transfer via a quadratic temperature profile in solids)are made for the modelling of such phase changes.In the present work,these shortcomings are illustrated and further overcome by solving a 2D heat conduction model in the solid by a mixed Raviart-Thomas finite element method coupled to the liquid phase due to heat and mass exchanges through Stefan condition.The liquid phase is modeled with a 0D multi-layer approach.The 0D-liquid and 2D-solid mod-els are coupled by a Stefan like phase change interface model.Several sanity checks are performed to assess the validity of the approach on 1D and 2D academical configurations for which exact or reference solutions are available.Then more advanced situations(genu-ine multi-dimensional phase changes and an"industrial-like scenario")are simulated to verify the appropriate behavior of the obtained coupled simulation scheme.
基金supported by the National Basic Research Program of China(Grant Nos.2010CB950400 and 2010CB428603)the Chinese Academy of Science(Grant No.KZCX2-YW-BR-14)
文摘Diagnosis of changes in the winter stratospheric circulation in the Fifth Coupled Model Intercomparison Project (CMIP5) scenarios simulated by the Flexible Global Ocean-Atmosphere-Land System model, second version spectrum (FGOALS-s2), indicates that the model can generally reproduce the present climatology of the stratosphere and can capture the general features of its long-term changes during 1950-2000, including the global stratospheric cooling and the strengthening of the westerly polar jet, though the simulated polar vortex is much cooler, the jet is much stronger, and the projected changes are generally weaker than those revealed by observation data. With the increase in greenhouse gases (GHGs) effect in the historical simu- lation from 1850 to 2005 (called the HISTORICAL run) and the two future projections for Representative Concentration Pathways (called the RCP4.5 and RCP8.5 scenarios) from 2006 to 2100, the stratospheric response was generally steady, with an increasing stratospheric cooling and a strengthening polar jet ex- tending equatorward. Correspondingly, the leading oscillation mode, defined as the Polar Vortex Oscillation (PVO), exhibited a clear positive trend in each scenario, confirming the steady strengthening of the polar vortex. However, the positive trend of the PVO and the strengthening of the polar jet were not accompa- nied by decreased planetary-wave dynamical heating, suggesting that the cause of the positive PVO trend and the polar stratospheric cooling trend is probably the radiation cooling effect due to increase in GHGs. Nevertheless, without the long-term linear trend, the temporal variations of the wave dynamic heating, the PVO, and the polar stratospheric temperature are still closely coupled in the interannual and decadal time scales.
基金supported by the US National Science Foundation(Grant No.AGS-1243027)Computer support from the Center for High-Performance Computing at the University of Utah is appreciatedhigh-performance computing support from Yellowstone(ark:/85065/d7wd3xhc),provided by NCAR’s Computational and Information Systems Laboratory and sponsored by the National Science Foundation,is also acknowledged
文摘Accurate forecasting of the intensity changes of hurricanes is an important yet challenging problem in numerical weather prediction. The rapid intensification of Hurricane Katrina(2005) before its landfall in the southern US is studied with the Advanced Research version of the WRF(Weather Research and Forecasting) model. The sensitivity of numerical simulations to two popular planetary boundary layer(PBL) schemes, the Mellor–Yamada–Janjic(MYJ) and the Yonsei University(YSU) schemes, is investigated. It is found that, compared with the YSU simulation, the simulation with the MYJ scheme produces better track and intensity evolution, better vortex structure, and more accurate landfall time and location. Large discrepancies(e.g.,over 10 hPa in simulated minimum sea level pressure) are found between the two simulations during the rapid intensification period. Further diagnosis indicates that stronger surface fluxes and vertical mixing in the PBL from the simulation with the MYJ scheme lead to enhanced air–sea interaction, which helps generate more realistic simulations of the rapid intensification process. Overall, the results from this study suggest that improved representation of surface fluxes and vertical mixing in the PBL is essential for accurate prediction of hurricane intensity changes.
基金The National Science Fund for Distinguished Young Scholars of China under contract No.5142590the Nanjing Hydraulic Research Institute Foundation of China under contract No.Y215011
文摘The comparison of the underwater topographic data in recent four decades shows that main waterways of the radial sand ridges area in the southern Yellow Sea tend to gradually migrate southward(scour depth and southward extension of the main channels in Xiyang, southward approach of Lanshayang Waterway and Xiaomiaohong Waterway on South Flank). Although there are various hypotheses about the cause and mechanism of the overall southward migration of the radial sand ridges, no universal and reliable understanding has been obtained so far. The mechanism of this process becomes a challenging problem which serves a key issue in the morphodynamics of the radial sand ridges and the harbor construction in this area. On the basis of the shoreline positions and underwater terrains at different development stages of the Huanghe Delta coast in northern Jiangsu Province, China since the northward return of the Huanghe River and flowed into the Bohai Sea,combined with the tidal wave numerical simulation study, the characteristics and hydrodynamic changes of the tidal wave system in the southern Yellow Sea at different evolution stages are investigated. It is shown that due to the shoreline retreat and the erosion of underwater delta, tidal current velocity is enhanced, and the enhanced area gradually migrates southward. It is revealed that this southward migration of a large-scale regional hydrodynamic axis is possibly a dominant mechanism leading to the overall southward migration of the radial sand ridges.
基金funded by the National Natural Science Foundation of China (Grants No.51278239)
文摘To improve flood control efficiency and increase urban resilience to flooding,the impacts of forest type change on flood control in the upper reach of the Tingjiang River(URTR) were evaluated by a modified model based on the Soil Conservation Service curve number(SCS-CN) method. Parameters of the model were selected and determined according to the comprehensive analysis of model evaluation indexes. The first simulation of forest reconstruction scenario,namely a coniferous forest covering 59.35km^2 is replaced by a broad-leaved forest showed no significant impact on the flood reduction in the URTR. The second simulation was added with 61.75km^2 bamboo forest replaced by broad-leaved forest,the reduction of flood peak discharge and flood volume could be improved significantly. Specifically,flood peak discharge of 10-year return period event was reduced to 7-year event,and the reduction rate of small flood was 21%-28%. Moreover,the flood volume was reduced by 9%-14% and 18%-35% for moderate floods and small floods,respectively. The resultssuggest that the bamboo forest reconstruction is an effective control solution for small to moderate flood in the URTR,the effect of forest conversion on flood volume is increasingly reduced as the rainfall amount increases to more extreme magnitude. Using a hydrological model with scenarios analysis is an effective simulation approach in investigating the relationship between forest type change and flood control. This method would provide reliable support for flood control and disaster mitigation in mountainous cities.
基金The Sichuan Science and Technology Program (2020YFS0335, 2021YFH0121)The National College Students’ Innovative Entrepreneurial Training Plan Program of Sichuan Agricultural University (202110626038)The Double Support Program Project of Discipline Construction of Sichuan Agricultural University of China (2018, 2019, 2020)。
文摘Delimiting ecological space scientifically and making reasonable predictions of the spatial-temporal trend of changes in the dominant ecosystem service functions(ESFs) are the basis of constructing an ecological protection pattern of territorial space, which has important theoretical significance and application value. At present, most research on the identification, functional partitioning and pattern reconstruction of ecological space refers to the current ESFs and their structural information, which ignores the spatial-temporal dynamic nature of the comprehensive and dominant ESFs, and does not seriously consider the change simulation in the dominant ESFs of the future ecological space. This affects the rationality of constructing an ecological space protection pattern to some extent. In this study, we propose an ecological space delimitation method based on the dynamic change characteristics of the ESFs, realize the identification of the ecological space range in Qionglai City and solve the problem of ignoring the spatial-temporal changes of ESFs in current research. On this basis, we also apply the Markov-CA model to integrate the spatial-temporal change characteristics of the dominant ESFs, successfully realize the simulation of the spatial-temporal changes in the dominant ESFs in Qionglai City’s ecological space in 2025, find a suitable method for simulating ecological spatial-temporal changes and also provide a basis for constructing a reasonable ecological space protection pattern. This study finds that the comprehensive quantity of ESF and its annual rate of change in Qionglai City show obvious dynamics, which confirms the necessity of considering the dynamic characteristics of ESFs when identifying ecological space. The areas of ecological space in Qionglai city represent 98307 ha by using the ecological space identification method proposed in this study, which is consistent with the ecological spatial distribution in the local ecological civilization construction plan. This confirms the reliability of the ecological space identification method based on the dynamic characteristics of the ESFs. The results also show that the dominant ESFs in Qionglai City represented strong non-stationary characteristics during 2003–2019,which showed that we should fully consider the influence of the dynamics in the dominant ESFs on the future ESF pattern during the process of constructing the ecological spatial protection pattern. The Markov-CA model realized the simulation of spatial-temporal changes in the dominant ESFs with a high precision Kappa coefficient of above 0.95, which illustrated the feasibility of using this model to simulate the future dominant ESF spatial pattern. The simulation results showed that the dominant ESFs in Qionglai will still undergo mutual conversions during 2019–2025 due to the effect of the their non-stationary nature. The ecological space will still maintain the three dominant ESFs of primary product production, climate regulation and hydrological regulation in 2025, but their areas will change to 32793 ha, 52490 ha and 13024 ha, respectively. This study can serve as a scientific reference for the delimitation of the ecological conservation redline, ecological function regionalization and the construction of an ecological spatial protection pattern.
基金the National Key R&D Program of China[Grant Number 2019YFA0607203]the National Natural Science Foundation of China[Grant Number 42001326 and 42171410]the Natural Science Foundation of Guangdong Province of China[Grant Number 2021A1515011192].
文摘The accessibility provided by the transportation system plays an essential role in driving urban growth and urban functional land use changes.Conventional studies on land use simulation usually simplified the accessibility as proximities and adopted the grid-based simulation strategy,leading to the insufficiencies of characterizing spatial geometry of land parcels and simulating subtle land use changes among urban functional types.To overcome these limita-tions,an Accessibility-interacted Vector-based Cellular Automata(A-VCA)model was proposed for the better simulation of realistic land use change among different urban functional types.The accessibility at both local and zonal scales derived from actual travel time data was considered as a key driver of fine-scale urban land use changes and was integrated into the vector-based CA simulation process.The proposed A-VCA model was tested through the simulation of urban land use changes in the City of Toronto,Canada,during 2012-2016.A vector-based CA without considering the driving factor of accessibility(VCA)and a popular grid-based CA model(Future Land Use Simulation,FLUS)were also implemented for compar-isons.The simulation results reveal that the proposed A-VCA model is capable of simulating fine-scale urban land use changes with satisfactory accuracy and good morphological feature(kappa=0.907,figure of merit=0.283,and cumulative producer’s accuracy=72.83%±1.535%).The comparison also shows significant outperformance of the A-VCA model against the VCA and FLUS models,suggesting the effectiveness of the accessibility-interactive mechanism and vector-based simulation strategy.The proposed model provides new tools for a better simula-tion of fine-scale land use changes and can be used in assisting the formulation of urban and transportation planning.