Change vector analysis (CVA) and principal component analysis in NDVI time-trajectories space are powerful tools to analyze land-cover change. The magnitude of the change vector indicates amplitude of the change, whil...Change vector analysis (CVA) and principal component analysis in NDVI time-trajectories space are powerful tools to analyze land-cover change. The magnitude of the change vector indicates amplitude of the change, while its direction indicates the nature of the change. CVA is applied to two remotely sensed indicators of land surface conditions, NDVI and spatial structure, in order to improve the capability to detect and categorize land-cover change. The magnitude and type of changes are calculated in China from 1989 to 1999. Through the research, the main conclusions are drawn as follows: 1) The changes of NDVI are quite different between eastern China and western China, and the change range in the east is bigger than that in the west. The trend in NDVI time series is smoothly increasing, the increases happen mostly in Taiwan, Fujian, Sichuan and Henan provinces and the decreases occur in Yunnan and Xinjiang. 2) The spatial structure index can indicate changes in the seasonal ecosystem dynamics for spatially heterogeneous landscapes. Most of spatial structure changes, which occurred in southern China, correlated with vegetation growth processes and strike of mountains.展开更多
Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an ex...Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.展开更多
Long-term analyses of vegetation succession after catastrophic events are of high interest for an improved understanding of succession dynamics. However, in many studies such analyses were restricted to plot-based mea...Long-term analyses of vegetation succession after catastrophic events are of high interest for an improved understanding of succession dynamics. However, in many studies such analyses were restricted to plot-based measurements. Contrarily, spatially continuous observations of succession dynamics over extended areas and timeperiods are sparse. Here, we applied a change vector analysis(CVA) to investigate vegetation succession dynamics at Mount St. Helens after the great volcanic eruption in 1980 using Landsat. We additionally applied a supervised random forest classification using Sentinel-2 data to map the currently prevailing vegetation types. Change vector analysis was performed with the normalized difference vegetation index(NDVI) and the urban index(UI) for three subsequent decades after the eruption as well as for the whole observation time between 1984 and 2016. The influence of topography on the current vegetation distribution was examined by comparing altitude, slope angles and aspect values of vegetation classes derived by the random forest classification. WilcoxRank-Sum test was applied to test for significant differences between topographic properties of the vegetation classes inside and outside of the areas affected by the eruption. For the full time period, a total area of 516 km2 was identified as re-vegetated, whereas the area and magnitude of re-growing vegetation decreased during the three decades and migrated closer to the volcanic crater. Vegetation losses were mainly observed in regions unaffected by the eruption and related mostly to timber harvesting. The vegetation type classification reached a high overall accuracy of approximately 90%. 36 years after the eruption, coniferous and deciduous trees have established at formerly devastated areas dominating with a proportion of 66%, whereas shrubs are more abundant in riparian zones. Sparse vegetation dominates at regions very close to the crater. Elevation was found to have a great influence on the reestablishment and distribution of the vegetation classes within the devastated areas showing in almost all cases significant differences in altitude distribution. Slope was less important for the different classes-only representing significantly higher values for meadows, whereas aspect seems to have no notable influence on the reestablishment of vegetation at Mount St. Helens. We conclude that major vegetation succession dynamics after catastrophic events can be assessed and characterized over large areas from freely available remote sensing data and hence contribute to an improved understanding of succession dynamics.展开更多
Continuous and accurate monitoring of earth surface changes over rugged terrain Himalayas is important to manage natural resources and mitigate natural hazards.Conventional techniques generally focus on per-pixel base...Continuous and accurate monitoring of earth surface changes over rugged terrain Himalayas is important to manage natural resources and mitigate natural hazards.Conventional techniques generally focus on per-pixel based processing and overlook the sub-pixel variations occurring especially in case of low or moderate resolution remotely sensed data.However,the existing subpixel-based change detection(SCD)models are less effective to detect the mixed pixel information at its complexity level especially over rugged terrain regions.To overcome such issues,a topographically controlled SCD model has been proposed which is an improved version of widely used per-pixel based change vector analysis(CVA)and hence,named as a subpixel-based change vector analysis(SCVA).This study has been conducted over a part of the Western Himalayas using the advanced wide-field sensor(AWiFS)and Landsat-8 datasets.To check the effectiveness of the proposed SCVA,the cross-validation of the results has been done with the existing neural network-based SCD(NN-SCD)and per-pixel based models such as fuzzybasedCVA(FCVA)andpost-classification comparison(PCC).The results have shown that SCVA offered robust performance(85.6%-86.4%)as comparedtoNN-SCD(81.6%-82.4%),PCC(79.2%-80.4%),and FCVA(81.2%-83.6%).We concluded that SCVA helps in reducing the detection of spurious pixels and improve the efficacy of generating change maps.This study is beneficial for the accurate monitoring of glacier retreat and snow cover variability over rugged terrain regions using moderate resolution remotely sensed datasets.展开更多
In this paper,a technique based on image pyramid and Bayes rule for reducing noise effects in unsupervised change detection is proposed.By using Gaussian pyramid to process two multitemporal images respectively,two im...In this paper,a technique based on image pyramid and Bayes rule for reducing noise effects in unsupervised change detection is proposed.By using Gaussian pyramid to process two multitemporal images respectively,two image pyramids are constructed.The difference pyramid images are obtained by point-by-point subtraction between the same level images of the two image pyramids.By resizing all difference pyramid images to the size of the original multitemporal image and then making product operator among them,a map being similar to the difference image is obtained.The difference image is generated by point-by-point subtraction between the two multitemporal images directly.At last,the Bayes rule is used to distinguish the changed pixels.Both synthetic and real data sets are used to evaluate the performance of the proposed technique.Experimental results show that the map from the proposed technique is more robust to noise than the difference image.展开更多
基金National Natural Science Foundation of China No. 30000027 No.39899374
文摘Change vector analysis (CVA) and principal component analysis in NDVI time-trajectories space are powerful tools to analyze land-cover change. The magnitude of the change vector indicates amplitude of the change, while its direction indicates the nature of the change. CVA is applied to two remotely sensed indicators of land surface conditions, NDVI and spatial structure, in order to improve the capability to detect and categorize land-cover change. The magnitude and type of changes are calculated in China from 1989 to 1999. Through the research, the main conclusions are drawn as follows: 1) The changes of NDVI are quite different between eastern China and western China, and the change range in the east is bigger than that in the west. The trend in NDVI time series is smoothly increasing, the increases happen mostly in Taiwan, Fujian, Sichuan and Henan provinces and the decreases occur in Yunnan and Xinjiang. 2) The spatial structure index can indicate changes in the seasonal ecosystem dynamics for spatially heterogeneous landscapes. Most of spatial structure changes, which occurred in southern China, correlated with vegetation growth processes and strike of mountains.
文摘Abstract: Change detection is a standard tool to extract and analyze the earth's surface features from remotely sensed data. Among the different change detection techniques, change vector analysis (CVA) have an exceptional advantage of discriminating change in terms of change magnitude and vector direction from multispectral bands. The estimation of precise threshold is one of the most crucial task in CVA to separate the change pixels from unchanged pixels because overall assessment of change detection method is highly dependent on selected threshold value. In recent years, integration of fuzzy clustering and remotely sensed data have become appropriate and realistic choice for change detection applications. The novelty of the proposed model lies within use of fuzzy maximum likelihood classification (FMLC) as fuzzy clustering in CVA. The FMLC based CVA is implemented using diverse threshold determination algorithms such as double-window flexible pace search (DFPS), interactive trial and error (T&E), and 3x3-pixel kernel window (PKW). Unlike existing CVA techniques, addition of fuzzy clustering in CVA permits each pixel to have multiple class categories and offers ease in threshold determination process. In present work, the comparative analysis has highlighted the performance of FMLC based CVA overimproved SCVA both in terms of accuracy assessment and operational complexity. Among all the examined threshold searching algorithms, FMLC based CVA using DFPS algorithm is found to be the most efficient method.
文摘Long-term analyses of vegetation succession after catastrophic events are of high interest for an improved understanding of succession dynamics. However, in many studies such analyses were restricted to plot-based measurements. Contrarily, spatially continuous observations of succession dynamics over extended areas and timeperiods are sparse. Here, we applied a change vector analysis(CVA) to investigate vegetation succession dynamics at Mount St. Helens after the great volcanic eruption in 1980 using Landsat. We additionally applied a supervised random forest classification using Sentinel-2 data to map the currently prevailing vegetation types. Change vector analysis was performed with the normalized difference vegetation index(NDVI) and the urban index(UI) for three subsequent decades after the eruption as well as for the whole observation time between 1984 and 2016. The influence of topography on the current vegetation distribution was examined by comparing altitude, slope angles and aspect values of vegetation classes derived by the random forest classification. WilcoxRank-Sum test was applied to test for significant differences between topographic properties of the vegetation classes inside and outside of the areas affected by the eruption. For the full time period, a total area of 516 km2 was identified as re-vegetated, whereas the area and magnitude of re-growing vegetation decreased during the three decades and migrated closer to the volcanic crater. Vegetation losses were mainly observed in regions unaffected by the eruption and related mostly to timber harvesting. The vegetation type classification reached a high overall accuracy of approximately 90%. 36 years after the eruption, coniferous and deciduous trees have established at formerly devastated areas dominating with a proportion of 66%, whereas shrubs are more abundant in riparian zones. Sparse vegetation dominates at regions very close to the crater. Elevation was found to have a great influence on the reestablishment and distribution of the vegetation classes within the devastated areas showing in almost all cases significant differences in altitude distribution. Slope was less important for the different classes-only representing significantly higher values for meadows, whereas aspect seems to have no notable influence on the reestablishment of vegetation at Mount St. Helens. We conclude that major vegetation succession dynamics after catastrophic events can be assessed and characterized over large areas from freely available remote sensing data and hence contribute to an improved understanding of succession dynamics.
文摘Continuous and accurate monitoring of earth surface changes over rugged terrain Himalayas is important to manage natural resources and mitigate natural hazards.Conventional techniques generally focus on per-pixel based processing and overlook the sub-pixel variations occurring especially in case of low or moderate resolution remotely sensed data.However,the existing subpixel-based change detection(SCD)models are less effective to detect the mixed pixel information at its complexity level especially over rugged terrain regions.To overcome such issues,a topographically controlled SCD model has been proposed which is an improved version of widely used per-pixel based change vector analysis(CVA)and hence,named as a subpixel-based change vector analysis(SCVA).This study has been conducted over a part of the Western Himalayas using the advanced wide-field sensor(AWiFS)and Landsat-8 datasets.To check the effectiveness of the proposed SCVA,the cross-validation of the results has been done with the existing neural network-based SCD(NN-SCD)and per-pixel based models such as fuzzybasedCVA(FCVA)andpost-classification comparison(PCC).The results have shown that SCVA offered robust performance(85.6%-86.4%)as comparedtoNN-SCD(81.6%-82.4%),PCC(79.2%-80.4%),and FCVA(81.2%-83.6%).We concluded that SCVA helps in reducing the detection of spurious pixels and improve the efficacy of generating change maps.This study is beneficial for the accurate monitoring of glacier retreat and snow cover variability over rugged terrain regions using moderate resolution remotely sensed datasets.
基金the National Basic Research Program(973) of China (No. 2006CB701303)the National High Technology Research and Development Program(863) of China (No. 2006AA12Z105)
文摘In this paper,a technique based on image pyramid and Bayes rule for reducing noise effects in unsupervised change detection is proposed.By using Gaussian pyramid to process two multitemporal images respectively,two image pyramids are constructed.The difference pyramid images are obtained by point-by-point subtraction between the same level images of the two image pyramids.By resizing all difference pyramid images to the size of the original multitemporal image and then making product operator among them,a map being similar to the difference image is obtained.The difference image is generated by point-by-point subtraction between the two multitemporal images directly.At last,the Bayes rule is used to distinguish the changed pixels.Both synthetic and real data sets are used to evaluate the performance of the proposed technique.Experimental results show that the map from the proposed technique is more robust to noise than the difference image.