Pesticide efficacy tests are typically conducted in experimental plots which involve applying multiple chemical treatments at different application rates and timings. Utilizing a single boom pesticide applicator requi...Pesticide efficacy tests are typically conducted in experimental plots which involve applying multiple chemical treatments at different application rates and timings. Utilizing a single boom pesticide applicator requires navigating to individual plots, applying a pesticide assigned to those plots and when all replications are completed, cleaning the equipment and reloading the next pesticide treatment into the tank. It usually takes several hours to accomplish this task, especially when the left hand side of a plot requires a different pesticide treatment than the right hand side. In order to facilitate application of pesticide treatments in experimental plots, two map-based controller systems were developed to drive multi-channel pesticide applicators. The Clemson “Multi-Channel Chemical Controllers” consist of solid-state relays controlled by custom software, solenoid valves, and GPS receivers. The first system can control up to 24 individual booms which could independently apply up to 24 different chemical treatments in each field plot area. The second system is the Clemson “Intelligent Farm Controller” (iFc), which could be connected to a variety of devices, such as spray and motor actuators. For this study, the controller was designed to handle four output pins to control four relays;however, it could easily be expanded to control more relays, if needed. On average, these systems reduced application times in test fields from six hours to 20 minutes, compared to single-boom applicators (p = 0.001), thereby reducing the time interval between treatment applications and significantly reducing the potential effect of adverse weather.展开更多
Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper w...Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.展开更多
文摘Pesticide efficacy tests are typically conducted in experimental plots which involve applying multiple chemical treatments at different application rates and timings. Utilizing a single boom pesticide applicator requires navigating to individual plots, applying a pesticide assigned to those plots and when all replications are completed, cleaning the equipment and reloading the next pesticide treatment into the tank. It usually takes several hours to accomplish this task, especially when the left hand side of a plot requires a different pesticide treatment than the right hand side. In order to facilitate application of pesticide treatments in experimental plots, two map-based controller systems were developed to drive multi-channel pesticide applicators. The Clemson “Multi-Channel Chemical Controllers” consist of solid-state relays controlled by custom software, solenoid valves, and GPS receivers. The first system can control up to 24 individual booms which could independently apply up to 24 different chemical treatments in each field plot area. The second system is the Clemson “Intelligent Farm Controller” (iFc), which could be connected to a variety of devices, such as spray and motor actuators. For this study, the controller was designed to handle four output pins to control four relays;however, it could easily be expanded to control more relays, if needed. On average, these systems reduced application times in test fields from six hours to 20 minutes, compared to single-boom applicators (p = 0.001), thereby reducing the time interval between treatment applications and significantly reducing the potential effect of adverse weather.
文摘Effective thermal control systems are essential for the reliable working of insulated gate bipolar transistors (IGBTs) in many applications. A novel spray cooling loop system with integrated sintered porous copper wick (SCLS-SPC) is proposed to meet the requirements of higher device level heat fluxes and the harsh environments in some applications such as hybrid, fuel cell vehicles and aerospace. Fuzzy logic and proportional-integral-derivative (PID) policies are applied to adjust the electronic temperature within a safe working range. To evaluate the thermal control effect, a mathematical model of a 4-node thermal network and pump are established for predicting the dynamics of the SCLS-SPC. Moreover, the transient response of the 4 nodes and vapor mass flowrate under no control, PID and Fuzzy-PID are numerically investigated and discussed in detail.