Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rai...Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rainfall/Streamflow </span><span style="font-family:""><span style="font-family:Tahoma;">Anomaly as preliminary tools for the presence of drought signatures while detailed characterisation was via Streamflow Drought Index (SDI). The results revealed that hydrological drought was observed in all the stations;however, though in general, the stations could be classified as experiencing near normal drought conditions with mild drought signatures. The findings also revealed that the average streamflow deficit volume and durations of the hydrological drought severity were 1.780 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 192 months, 1.444 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, 3.148 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, and 0.159 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 372 months for Bakolori, Goronyo (pre dam construction era), Goronyo (post dam construction era) and Zobe stations, respectively. The results also revealed the relevance of flow duration curve and analysis of frequency of drought state transition for the development of scenario-based basin water resources management protocol. The coefficient of determination (R</span><sup><span style="font-family:Tahoma;">2</span></sup><span style="font-family:Tahoma;">) statistic of the developed regression models indicate that 73.3% and 86.5% variation in streamflow dynamics across the Basin can be explained by climate change variables. However, for sustainable management of water resources in the Basin, it is imperative that characterisation of hydrological drought and monitoring should employ robust indices which use improved monthly precipitation estimates under global warming scenario in addition to ensuring that there is a shift from reactive to proactive approach in order to combat hydrological risk. Hence, a robust framework that finds application both for planning mitigation actions which embody strategic, tactical and emergency components should be designed;to this end, analysis of persistence and recurrence of drought in time and determination of possible recurrent patterns are necessary.展开更多
The focus of the study is to measure the level of awareness of Indigenous People on Climate Variation. It inquired into their observations and organizing strategy to cope with the early impacts of climate change on th...The focus of the study is to measure the level of awareness of Indigenous People on Climate Variation. It inquired into their observations and organizing strategy to cope with the early impacts of climate change on their socio-economic and cultural beliefs. The organization’s adaptation and mitigation practices to protect the environment are also discussed using as basis of analysis the multi-stakeholders framework of forest protection. The study documented and recognized the Indigenous Peoples contributions to the preservation and protection of forest resources in Caraballo mountain and a shift in paradigm to Indigenous People’s centered forest resources management is recommended.展开更多
Climate change and associated rising in sea water level have affected the salinity in many rivers around the world. It has an effect on the embouchure adjacent with the sea, which is called the salinity intrusion prob...Climate change and associated rising in sea water level have affected the salinity in many rivers around the world. It has an effect on the embouchure adjacent with the sea, which is called the salinity intrusion problem. This study investigated the effects of climate change on sea water level that affects the hydraulic conditions, salinity, water supply and agricultural areas in the lower Chao Phraya River by MIKE 11 model has been used. The study covered the area from Chao Phraya Dam (barrage), Chai Nat Province to the river estuary, Samut Prakan Province. The model was divided into two parts, hydrodynamic module and advection-dispersion model. Calibration of each part was done by adjusting its important coefficients. It was observed that the Manning’s coefficient (n) and coefficient dispersion of mass were in the range of 0.025 - 0.40 and 800 - 1600 m2/s, respectively. The results of comparison between models and observation data revealed order of forecasting error (R2) with the range of 0.76-0.99 for water level and 0.73 - 0.86 for salinity. The RCP 8.5 scenario from IPCC report was simulated. It was found that sea water level rising in was 1.16 m in the year of 2100, and salinity at SamlaePump Station was risen to 0.37 - 0.75 g/l. The value of 0.25 g/l exceeding standard and the pointed tip of salinity was at Koh Rain District, Ayutthaya Province (137 km from Chao Phraya Dam: CPD). For agricultural sectors, the value of 0.20 g/l exceeding standard and the pointed tip of salinity was at Ban Mai District, Ayutthaya Province (123 km from CPD). Results obtained from this study will give the guideline in raw water resources management for water supply and agricultural in Chao Phraya River Basin.展开更多
In the post-pandemic era,libraries need to improve the emergency support of electronic resources and establish a relatively perfect electronic resource support system in order to adapt to the construction goal of the ...In the post-pandemic era,libraries need to improve the emergency support of electronic resources and establish a relatively perfect electronic resource support system in order to adapt to the construction goal of the national emergency system as well as realize their own transformation and development.It must be realized through enhancing awareness and planning,strengthening policy support and top-level design,realizing rapid response and intelligent response,improving technical support,promoting resource synergy,integration,and sharing,strengthening community integration,as well as providing intelligent management and services.展开更多
In the current scenario,Lake Urmia,one of the vastest hyper saline lakes on the Earth,has been affected by serious environmental degradation.Using different satellite images and observational data,this study investiga...In the current scenario,Lake Urmia,one of the vastest hyper saline lakes on the Earth,has been affected by serious environmental degradation.Using different satellite images and observational data,this study investigated the changes in the lake for the period 1970–2020 based on the effects of climate change and several human-induced processes on Lake Urmia,such as population growth,excessive dam construction,low irrigation water use efficiency,poor water resources management,increased sediment flow into the lake,and lack of political and legal frameworks.The results indicated that between 1970 and 1997,the process of change in Lake Urmia was slow;however;the shrinkage was faster between 1998 and 2018,with about 30.00%of the lake area disappearing.As per the findings,anthropogenic factors had a much greater impact on Lake Urmia than climate change and prolonged drought;the mismanagement of water consumption in the agricultural sector and surface and underground water withdrawals in the basin have resulted in a sharp decrease in the lake's surface.These challenges have serious implications for water resources management in Lake Urmia Basin.Therefore,we provided a comprehensive overview of anthropogenic factors on the changes in Lake Urmia along with existing opportunities for better water resources management in Lake Urmia Basin.This study serves as a guideline framework for climate scientists and hydrologists in order to assess the effects of different factors on lake water resources and for decision-makers to formulate strategies and plans according to the management task.展开更多
Owing to the geographic disadvantages of mountain villages, the social, cultural, and economic conditions of mountain villagers are inferior to those of urban dwellers in South Korea. Thus, in 1995, the The government...Owing to the geographic disadvantages of mountain villages, the social, cultural, and economic conditions of mountain villagers are inferior to those of urban dwellers in South Korea. Thus, in 1995, the The government of South Korea launched a mountain village development support program to promote agriculture and forestry, balance national land development, and preserve cultural heritage. The program was effectively implemented, improving the income, population size, and living conditions of villagers in addition to setting up a system for stable project implementation. However, concerns were raised about long-term development planning, the creation and marketing of specialty brands, facility management/operation, and follow-up support. The government conducted surveys of mountain villagers in 2003 and 2014, obtaining basic data to address these issues. This study evaluates the outcomes of these two surveys, suggesting areas requiring focusedaction, concentrating on village development projects, forest resource distribution and use, demographic trends, the economy, exchange with urban areas, green tourism, and master planning. We find that despite growth in the forest labor force, forest ownership is diminishing in terms of the number and scale of holdings. Consequently, it is necessary to commercialize forest resources, establish favorable settlement conditions, and expand government support for village-run projects. In addition, systematic forest management for older tree age classes would benefit the public and provide assets for future mountain village development. Our results are expected to provide baseline information for the establishment and efficient implementation of mountain village development policy.展开更多
In this secondary research, published works on effect of climate change on water resources in other countries and in Australia were reviewed critically. Research question, objectives and assumptions were made to facil...In this secondary research, published works on effect of climate change on water resources in other countries and in Australia were reviewed critically. Research question, objectives and assumptions were made to facilitate this study. First, methods used for such studies and their results at global level were reviewed. Then Australian specific methods of study and findings were reviewed. More commonly, both globally and in Australia, simulations using long-term real data on selected climatic scenarios of global climatic models are projected for long-term future trends. The validity and certainty of predicted occurrences depend upon the closeness of real time data with scenarios to which they are projected. Even with these limitations, projections of already rising temperatures and declining rainfall on surface water and ground water availabilities show gradual decline in water availability leading to water stress both for human communities and ecosystems The role of human-induced emissions in hastening the degradation process has also been investigated. Conserving all available water, practising efficient water consumption and prudent water policies only can provide some relief from what is inevitable.展开更多
Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north...Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north western belts of Pakistan are highly sensitive to deforestation and other LULC changes, which have profound impacts on various sectors of bio-physical and socio-economic systems. Assessment of LULC changes has high significance for protection, conservation and monitoring mountainous environment. The present study is an attempt to assess the landscape changes with particular reference to forest cover depletion in Kurram Agency located in the north western mountain belt of Pakistan. For detailed comparative analysis the study area has been divided into three sections, which coincide with the present administrative divisions of the Agency, i.e., Upper,Lower and Central Kurram. Temporal span of this study covers four decades. In this study, land use map of 1970 and land sat satellite imageries of 1987, 2000 and 2014 were used as spatial data sets. The images were processed and classified into six LULC classes through geospatial packages and change detection maps were prepared for each division and time period.Findings of the study reveal two trends in the four major LULC categories. Forest and rangeland have shrunk, on average, by 15% and 7.5% respectively while, bare soil and rocks outcrops have expanded by 89% and agriculture land by 7.2% in Kurram agency.The water bodies and snow cover have minor fluctuation in its land area. Major causes of shrinking greenery is attributed to high influx of Afghan refugees and high energy demand of growing population. However, with outflow of the refugees from Kurram agency the general trend in forest cover has reverted and deforestation rate has slowed down.展开更多
In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human a...In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.展开更多
Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on ...Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on the brink of desiccation.This paper studied the impacts of climate change on the streamflow of Zarrineh River.The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5(coupled model intercomparison project phase 5)data series(namely,BCC-CSM1-1,BNU-ESM,CSIRO-Mk3-6-0,GFDL-ESM2G,IPSL-CM5A-LR,MIROC-ESM and MIROC-ESM-CHEM)under RCP2.6(RCP,representative concentration pathways)and RCP8.5.The model data series were statistically downscaled and bias corrected using an artificial neural network(ANN)technique and a Gamma based quantile mapping bias correction method.The best model(CSIRO-Mk3-6-0)was chosen by the TOPSIS(technique for order of preference by similarity to ideal solution)method from seven CMIP5 models based on statistical indices.For simulation of streamflow,a rainfall-runoff model,the hydrologiska byrans vattenavdelning(HBV-Light)model,was utilized.Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5,respectively.In the case of temperature,the numbers change from 12.33℃ and 12.37℃ in 2015 to 14.28℃ and 14.32℃ in 2050.Corresponding to these climate scenarios,this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m^(3)/s in 2015 to 22.61 and 23.19 m^(3)/s in 2050.The finding is of important meaning for water resources planning purposes,management programs and strategies of the Lake's endangered ecosystem.展开更多
Due to the rapid development of the space industry,ever higher demands are being made for the optimization and improvement of spacecraft thermal management systems.Thermal control technology has become one of the key ...Due to the rapid development of the space industry,ever higher demands are being made for the optimization and improvement of spacecraft thermal management systems.Thermal control technology has become one of the key bottlenecks that restrict the level of spacecraft design.In this paper,the thermal management technologies(TMTs)for spacecraft electronics are reviewed according to the different heat transfer processes,including heat acquisition,heat transport,and heat rejection.The researches on efficient heat acquisition include the utilization of high thermal conductance materials,the development of novel package structure based on micro-/nanoelectromechanical system(MEMS/NEMS)technologies,and advanced near-junction microfluidic cooling techniques.For the heat transport process,various heat pipes and mechanical pumped fluid loops(MPFLs)are widely implemented to transport heat from heat generation components to the ultimate heat sinks.The heat pipes are divided into two categories based on their structure layout,i.e.,separated heat pipes and unseparated heat pipes.The merits and demerits of these heat pipes and MPFLs(including the single-phase MPFL and the two-phase MPFL)are discussed and summarized respectively.In terms of the heat rejection for spacecraft,thermal radiators are normally the sole option due to the unique space environment.To meet the requirements of large heat dissipation power and fluctuated thermal environment,research efforts on the radiators mainly focus on the development of deployable radiators,variable emissivity radiators,and the combination with other techniques.Due to the fluctuated characteristics of the heat power of internal electronics and the outer thermal environment,the phase change materials(PCMs)exhibit great advantages in this scenario and have attracted a lot of research attention.This review aims to serve as a reference guide for the development of thermal management system in the future spacecraft.展开更多
The Forest Department in the State of Uttar Pradesh, India developed Forest Management Information System (FMIS) for achieving organizational goals of improved financial and human resource management, improvement in t...The Forest Department in the State of Uttar Pradesh, India developed Forest Management Information System (FMIS) for achieving organizational goals of improved financial and human resource management, improvement in the management of forests and wildlife, and for achieving responsive administration. This paper, based on field research, presents an assessment of the dynamics of FMIS in organizational context for a better understanding of such systems in forestry organizations. The paper also investigates the success of FMIS in assisting decision makers in achieving organizational goals. Based on the knowledge developed during the course of the study, key learning elements have been highlighted for the benefit of the stakeholders in information systems in forest sector.展开更多
Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hy...Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.展开更多
Predicting and allocating surface water resources are becoming increasingly important tasks for addressing the risk of water shortages and challenges of climate change,especially in reservoir basins.However,surface wa...Predicting and allocating surface water resources are becoming increasingly important tasks for addressing the risk of water shortages and challenges of climate change,especially in reservoir basins.However,surface water resource management includes many systematic uncertainties and complexities that are difficult to address.Thus,advanced models must be developed to support predictive simulations and optimal allocations of surface water resources,which are urgently required to ensure regional water supply security and sustainable socioeconomic development.In this study,a soil and water assessment tool-based interval linear multi-objective programming(SWAT-ILMP)model was developed and integrated with climate change scenarios,SWAT,interval parameter programming,and multi-objective programming.The developed model was applied to the Xinfengjiang Reservoir basin in South China and was able to identify optimal allocation schemes for water resources under different climate change scenarios.In the forecast year 2025,the optimal water quantity for power generation would be the highest and account for∼60%of all water resources,the optimal water quantity for water supply would account for∼35%,while the optimal surplus water released from the reservoir would be the lowest at≤5%.In addition,climate change and reservoir initial storage would greatly affect the surplus water quantity but not the power generation or water supply quantity.In general,the SWAT-ILMP model is applicable and effective for water resource prediction and management systems.The results from different scenarios can provide multiple alternatives to support rational water resource allocation in the study area.展开更多
Water resources of a country constitute one of its vital assets that significantly contribute to the socio-economic development and poverty eradication. However, this resource is unevenly distributed in both time and ...Water resources of a country constitute one of its vital assets that significantly contribute to the socio-economic development and poverty eradication. However, this resource is unevenly distributed in both time and space. The major source of water for these resources is direct rainfall, which is recently experiencing variability that threatens the distribution of resources and water availability in Uganda. The annual rainfall received in Uganda varies from 500 mm to 2800 mm, with an average of 1180 mm received in two main seasons. The spatial distribution of rainfall has resulted into a network of great rivers and lakes that possess big potential for development. These resources are being developed and depleted at a fast rate, a situation that requires assessment to establish present status of water resources in the country. The paper reviews the characteristics, availability, demand and importance of present day water resources in Uganda as well as describing the various issues, challenges and management of water resources of the country.展开更多
Until the early 1990s the Azraq basin in Jordan was covered by a huge wetland in the central parts representing a source of fresh water for all purposes. The presence of such wetland in the desert created a natural pa...Until the early 1990s the Azraq basin in Jordan was covered by a huge wetland in the central parts representing a source of fresh water for all purposes. The presence of such wetland in the desert created a natural pathway for migratory birds. Man made and natural impacts caused severe depletion of this basin and the oasis disappeared in the early 1990s. Under a GIS environment MAR layers were prepared for the Azraq basin. MAR mapping showed a very high and high potentials over 20.55% and 61.63% of the total basin area respectively;while the low potential areas represent only 4.03% of the total area.展开更多
Korean employers notoriously practice seniority-based personnel management, rather than one prioritizing workers’ skills or performance, and this has changed only slowly amid the evolving business landscape and advan...Korean employers notoriously practice seniority-based personnel management, rather than one prioritizing workers’ skills or performance, and this has changed only slowly amid the evolving business landscape and advancing labor standards. This study contributes to understanding this phenomenon by assessing Korean firms’ promotion criteria and practices over the past decade across distinct phases of industry business cycles, and between the economy’s primary and secondary sectors. Primary-sector firms are shown to be less likely than secondary-sector firms to base their promotion decisions on the analysis of workers’ achievements and colleague ratings, but rather on their performance of core job duties. Primary-sector firms have more advancement steps within their management ranks, and longer wait time until promotion at all ranks. Secondary-sector firms are flatter hierarchically, featuring shorter time to promotion at all ranks and fewer advancement steps, but also a lower fraction of promotions based on special merit. Firms’ promotion practices change over the business cycle. During expansionary years, the hierarchical dispersion of workers within organizations widens, particularly among primary-sector firms, with more workers remaining as regular staff but more managers promoted to senior management. As firms recruit more regular staff, years to promotion to managerial positions, and the count of advancement steps increase. Business expansion induces firms to streamline promotions to management based on colleague ratings subject to lesser review of workers’ own achievements. Over the past decade, promotions by special merit have receded while those by colleague ratings have gone up. Firms are thus apparently not transitioning toward merit- and achievement-based promotions, and continue relying on subjective colleague ratings and job-content analysis in their stagnant hierarchical structures. This has implications for workers and for policymakers tasked with ushering in more inclusive, objective and meritocratic personnel management practices.展开更多
文摘Hydrological drought is usually characterised by water loss over time from both underground and surface supplies. Thus for this study, the assessment of hydrological drought was carried out by employing Cumulative Rainfall/Streamflow </span><span style="font-family:""><span style="font-family:Tahoma;">Anomaly as preliminary tools for the presence of drought signatures while detailed characterisation was via Streamflow Drought Index (SDI). The results revealed that hydrological drought was observed in all the stations;however, though in general, the stations could be classified as experiencing near normal drought conditions with mild drought signatures. The findings also revealed that the average streamflow deficit volume and durations of the hydrological drought severity were 1.780 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 192 months, 1.444 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, 3.148 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 252 months, and 0.159 Mm</span><sup><span style="font-family:Tahoma;">3</span></sup><span style="font-family:Tahoma;"> and 372 months for Bakolori, Goronyo (pre dam construction era), Goronyo (post dam construction era) and Zobe stations, respectively. The results also revealed the relevance of flow duration curve and analysis of frequency of drought state transition for the development of scenario-based basin water resources management protocol. The coefficient of determination (R</span><sup><span style="font-family:Tahoma;">2</span></sup><span style="font-family:Tahoma;">) statistic of the developed regression models indicate that 73.3% and 86.5% variation in streamflow dynamics across the Basin can be explained by climate change variables. However, for sustainable management of water resources in the Basin, it is imperative that characterisation of hydrological drought and monitoring should employ robust indices which use improved monthly precipitation estimates under global warming scenario in addition to ensuring that there is a shift from reactive to proactive approach in order to combat hydrological risk. Hence, a robust framework that finds application both for planning mitigation actions which embody strategic, tactical and emergency components should be designed;to this end, analysis of persistence and recurrence of drought in time and determination of possible recurrent patterns are necessary.
文摘The focus of the study is to measure the level of awareness of Indigenous People on Climate Variation. It inquired into their observations and organizing strategy to cope with the early impacts of climate change on their socio-economic and cultural beliefs. The organization’s adaptation and mitigation practices to protect the environment are also discussed using as basis of analysis the multi-stakeholders framework of forest protection. The study documented and recognized the Indigenous Peoples contributions to the preservation and protection of forest resources in Caraballo mountain and a shift in paradigm to Indigenous People’s centered forest resources management is recommended.
文摘Climate change and associated rising in sea water level have affected the salinity in many rivers around the world. It has an effect on the embouchure adjacent with the sea, which is called the salinity intrusion problem. This study investigated the effects of climate change on sea water level that affects the hydraulic conditions, salinity, water supply and agricultural areas in the lower Chao Phraya River by MIKE 11 model has been used. The study covered the area from Chao Phraya Dam (barrage), Chai Nat Province to the river estuary, Samut Prakan Province. The model was divided into two parts, hydrodynamic module and advection-dispersion model. Calibration of each part was done by adjusting its important coefficients. It was observed that the Manning’s coefficient (n) and coefficient dispersion of mass were in the range of 0.025 - 0.40 and 800 - 1600 m2/s, respectively. The results of comparison between models and observation data revealed order of forecasting error (R2) with the range of 0.76-0.99 for water level and 0.73 - 0.86 for salinity. The RCP 8.5 scenario from IPCC report was simulated. It was found that sea water level rising in was 1.16 m in the year of 2100, and salinity at SamlaePump Station was risen to 0.37 - 0.75 g/l. The value of 0.25 g/l exceeding standard and the pointed tip of salinity was at Koh Rain District, Ayutthaya Province (137 km from Chao Phraya Dam: CPD). For agricultural sectors, the value of 0.20 g/l exceeding standard and the pointed tip of salinity was at Ban Mai District, Ayutthaya Province (123 km from CPD). Results obtained from this study will give the guideline in raw water resources management for water supply and agricultural in Chao Phraya River Basin.
文摘In the post-pandemic era,libraries need to improve the emergency support of electronic resources and establish a relatively perfect electronic resource support system in order to adapt to the construction goal of the national emergency system as well as realize their own transformation and development.It must be realized through enhancing awareness and planning,strengthening policy support and top-level design,realizing rapid response and intelligent response,improving technical support,promoting resource synergy,integration,and sharing,strengthening community integration,as well as providing intelligent management and services.
文摘In the current scenario,Lake Urmia,one of the vastest hyper saline lakes on the Earth,has been affected by serious environmental degradation.Using different satellite images and observational data,this study investigated the changes in the lake for the period 1970–2020 based on the effects of climate change and several human-induced processes on Lake Urmia,such as population growth,excessive dam construction,low irrigation water use efficiency,poor water resources management,increased sediment flow into the lake,and lack of political and legal frameworks.The results indicated that between 1970 and 1997,the process of change in Lake Urmia was slow;however;the shrinkage was faster between 1998 and 2018,with about 30.00%of the lake area disappearing.As per the findings,anthropogenic factors had a much greater impact on Lake Urmia than climate change and prolonged drought;the mismanagement of water consumption in the agricultural sector and surface and underground water withdrawals in the basin have resulted in a sharp decrease in the lake's surface.These challenges have serious implications for water resources management in Lake Urmia Basin.Therefore,we provided a comprehensive overview of anthropogenic factors on the changes in Lake Urmia along with existing opportunities for better water resources management in Lake Urmia Basin.This study serves as a guideline framework for climate scientists and hydrologists in order to assess the effects of different factors on lake water resources and for decision-makers to formulate strategies and plans according to the management task.
文摘Owing to the geographic disadvantages of mountain villages, the social, cultural, and economic conditions of mountain villagers are inferior to those of urban dwellers in South Korea. Thus, in 1995, the The government of South Korea launched a mountain village development support program to promote agriculture and forestry, balance national land development, and preserve cultural heritage. The program was effectively implemented, improving the income, population size, and living conditions of villagers in addition to setting up a system for stable project implementation. However, concerns were raised about long-term development planning, the creation and marketing of specialty brands, facility management/operation, and follow-up support. The government conducted surveys of mountain villagers in 2003 and 2014, obtaining basic data to address these issues. This study evaluates the outcomes of these two surveys, suggesting areas requiring focusedaction, concentrating on village development projects, forest resource distribution and use, demographic trends, the economy, exchange with urban areas, green tourism, and master planning. We find that despite growth in the forest labor force, forest ownership is diminishing in terms of the number and scale of holdings. Consequently, it is necessary to commercialize forest resources, establish favorable settlement conditions, and expand government support for village-run projects. In addition, systematic forest management for older tree age classes would benefit the public and provide assets for future mountain village development. Our results are expected to provide baseline information for the establishment and efficient implementation of mountain village development policy.
文摘In this secondary research, published works on effect of climate change on water resources in other countries and in Australia were reviewed critically. Research question, objectives and assumptions were made to facilitate this study. First, methods used for such studies and their results at global level were reviewed. Then Australian specific methods of study and findings were reviewed. More commonly, both globally and in Australia, simulations using long-term real data on selected climatic scenarios of global climatic models are projected for long-term future trends. The validity and certainty of predicted occurrences depend upon the closeness of real time data with scenarios to which they are projected. Even with these limitations, projections of already rising temperatures and declining rainfall on surface water and ground water availabilities show gradual decline in water availability leading to water stress both for human communities and ecosystems The role of human-induced emissions in hastening the degradation process has also been investigated. Conserving all available water, practising efficient water consumption and prudent water policies only can provide some relief from what is inevitable.
文摘Deforestation and other Land Use and Land Cover(LULC) changes, driven by variety of physical and anthropogenic factors, have altered the mountainous environment. Mountains around the world including northern and north western belts of Pakistan are highly sensitive to deforestation and other LULC changes, which have profound impacts on various sectors of bio-physical and socio-economic systems. Assessment of LULC changes has high significance for protection, conservation and monitoring mountainous environment. The present study is an attempt to assess the landscape changes with particular reference to forest cover depletion in Kurram Agency located in the north western mountain belt of Pakistan. For detailed comparative analysis the study area has been divided into three sections, which coincide with the present administrative divisions of the Agency, i.e., Upper,Lower and Central Kurram. Temporal span of this study covers four decades. In this study, land use map of 1970 and land sat satellite imageries of 1987, 2000 and 2014 were used as spatial data sets. The images were processed and classified into six LULC classes through geospatial packages and change detection maps were prepared for each division and time period.Findings of the study reveal two trends in the four major LULC categories. Forest and rangeland have shrunk, on average, by 15% and 7.5% respectively while, bare soil and rocks outcrops have expanded by 89% and agriculture land by 7.2% in Kurram agency.The water bodies and snow cover have minor fluctuation in its land area. Major causes of shrinking greenery is attributed to high influx of Afghan refugees and high energy demand of growing population. However, with outflow of the refugees from Kurram agency the general trend in forest cover has reverted and deforestation rate has slowed down.
基金This research was funded by the National Natural Science Foundation of China(U1603242)the Science and Technology Service Network Initiative(STS)Project in the Chinese Academy of Sciences(KFJ-STS-QYZD-071)+1 种基金the Training Program for Youth Innovative Talents in Science and Technology in Xinjiang Uygur Autonomous Regions(QN2016BS0052)the CAS"Light of West China"Program(2017-XBQNXZ-B-012).
文摘In this study,we analyzed the hydrological and meteorological data from the Syr Darya River Basin during the period of 1930–2015 to investigate variations in river runoff and the impacts of climate change and human activities on river runoff.The Syr Darya River,which is supplied by snow and glacier meltwater upstream,is an important freshwater source for Central Asia,as nearly half of the population is concentrated in this area.River runoff in this arid region is sensitive to climate change and human activities.Therefore,estimation of the climatic and hydrological changes and the quantification of the impacts of climate change and human activities on river runoff are of great concern and important for regional water resources management.The long-term trends of hydrological time series from the selected 11 hydrological stations in the Syr Darya River Basin were examined by non-parametric methods,including the Pettitt change point test and Mann-Kendall trend tests.It was found that 8 out of 11 hydrological stations showed significant downward trends in river runof f.Change of river runoff variations occurred in the year around 1960.Moreover,during the study period(1930–2015),annual mean temperature,annual precipitation,and annual potential evapotranspiration in the river basin increased substantially.We employed hydrological sensitivity method to evaluate the impacts of climate change and human activities on river runoff based on precipitation and potential evapotranspiration.It was estimated that human activities accounted for over 82.6%–98.7%of the reduction in river runoff,mainly owing to water withdrawal for irrigation purpose.The observed variations in river runoff can subsequently lead to adverse ecological consequences from an ecological and regional water resources management perspective.
文摘Zarrineh River is located in the northwest of Iran,providing more than 40%of the total inflow into the Lake Urmia that is one of the largest saltwater lakes on the earth.Lake Urmia is a highly endangered ecosystem on the brink of desiccation.This paper studied the impacts of climate change on the streamflow of Zarrineh River.The streamflow was simulated and projected for the period 1992-2050 through seven CMIP5(coupled model intercomparison project phase 5)data series(namely,BCC-CSM1-1,BNU-ESM,CSIRO-Mk3-6-0,GFDL-ESM2G,IPSL-CM5A-LR,MIROC-ESM and MIROC-ESM-CHEM)under RCP2.6(RCP,representative concentration pathways)and RCP8.5.The model data series were statistically downscaled and bias corrected using an artificial neural network(ANN)technique and a Gamma based quantile mapping bias correction method.The best model(CSIRO-Mk3-6-0)was chosen by the TOPSIS(technique for order of preference by similarity to ideal solution)method from seven CMIP5 models based on statistical indices.For simulation of streamflow,a rainfall-runoff model,the hydrologiska byrans vattenavdelning(HBV-Light)model,was utilized.Results on hydro-climatological changes in Zarrineh River basin showed that the mean daily precipitation is expected to decrease from 0.94 and 0.96 mm in 2015 to 0.65 and 0.68 mm in 2050 under RCP2.6 and RCP8.5,respectively.In the case of temperature,the numbers change from 12.33℃ and 12.37℃ in 2015 to 14.28℃ and 14.32℃ in 2050.Corresponding to these climate scenarios,this study projected a decrease of the annual streamflow of Zarrineh River by half from 2015 to 2050 as the results of climatic changes will lead to a decrease in the annual streamflow of Zarrineh River from 59.49 m^(3)/s in 2015 to 22.61 and 23.19 m^(3)/s in 2050.The finding is of important meaning for water resources planning purposes,management programs and strategies of the Lake's endangered ecosystem.
基金National Science Foundation of China(Grant No.:52206113)Science Fund Program for Distinguished Young Scholars(Overseas)(Grant No.:GYKP020).
文摘Due to the rapid development of the space industry,ever higher demands are being made for the optimization and improvement of spacecraft thermal management systems.Thermal control technology has become one of the key bottlenecks that restrict the level of spacecraft design.In this paper,the thermal management technologies(TMTs)for spacecraft electronics are reviewed according to the different heat transfer processes,including heat acquisition,heat transport,and heat rejection.The researches on efficient heat acquisition include the utilization of high thermal conductance materials,the development of novel package structure based on micro-/nanoelectromechanical system(MEMS/NEMS)technologies,and advanced near-junction microfluidic cooling techniques.For the heat transport process,various heat pipes and mechanical pumped fluid loops(MPFLs)are widely implemented to transport heat from heat generation components to the ultimate heat sinks.The heat pipes are divided into two categories based on their structure layout,i.e.,separated heat pipes and unseparated heat pipes.The merits and demerits of these heat pipes and MPFLs(including the single-phase MPFL and the two-phase MPFL)are discussed and summarized respectively.In terms of the heat rejection for spacecraft,thermal radiators are normally the sole option due to the unique space environment.To meet the requirements of large heat dissipation power and fluctuated thermal environment,research efforts on the radiators mainly focus on the development of deployable radiators,variable emissivity radiators,and the combination with other techniques.Due to the fluctuated characteristics of the heat power of internal electronics and the outer thermal environment,the phase change materials(PCMs)exhibit great advantages in this scenario and have attracted a lot of research attention.This review aims to serve as a reference guide for the development of thermal management system in the future spacecraft.
文摘The Forest Department in the State of Uttar Pradesh, India developed Forest Management Information System (FMIS) for achieving organizational goals of improved financial and human resource management, improvement in the management of forests and wildlife, and for achieving responsive administration. This paper, based on field research, presents an assessment of the dynamics of FMIS in organizational context for a better understanding of such systems in forestry organizations. The paper also investigates the success of FMIS in assisting decision makers in achieving organizational goals. Based on the knowledge developed during the course of the study, key learning elements have been highlighted for the benefit of the stakeholders in information systems in forest sector.
文摘Assessment report of the Intergovernmental Panel on Climate Change (IPCC) highlighted the complex linkages between climate change and water. The likely warmer climate induced by the climate change is set to alter hydrological cycle and the shifting pattern of the rainfall would affect the spatial and temporal distribution of runoff, soil moisture, and surface and groundwater reserves. Therefore, there is an urgent need to assess the impacts of climate change on water and devise adaptation measures including management structures and processes by which one can deal with this challenge. The paper highlights with the global overview of climate change impacts on water in the arid region, supported and substantiated through scientific evidence drawn from IPCC reports and other relevant documents. This paper provides an overview of water resource management challenges including transboundary geopolitical concerns documented across the world and emphasizes the importance of an integrated framework for adaptive policy making. Further, it examines the viable water resource management options for various sectors and regions and showcases some of the international best practices in adaptation and mitigation. The paper also explains the complementary role of traditional knowledge in coping with climate change risks and uncertainties and the need for a balanced view in designing adaptation and mitigation strategies.
基金supported by the National Natural Science Foundation of China(Nos.72122004 and 52379005)GuangDong Basic and Applied Basic Research Foundation(2022A1515012023)the Academician Workstation Project of Dongguan(No.DGYSZ201806).
文摘Predicting and allocating surface water resources are becoming increasingly important tasks for addressing the risk of water shortages and challenges of climate change,especially in reservoir basins.However,surface water resource management includes many systematic uncertainties and complexities that are difficult to address.Thus,advanced models must be developed to support predictive simulations and optimal allocations of surface water resources,which are urgently required to ensure regional water supply security and sustainable socioeconomic development.In this study,a soil and water assessment tool-based interval linear multi-objective programming(SWAT-ILMP)model was developed and integrated with climate change scenarios,SWAT,interval parameter programming,and multi-objective programming.The developed model was applied to the Xinfengjiang Reservoir basin in South China and was able to identify optimal allocation schemes for water resources under different climate change scenarios.In the forecast year 2025,the optimal water quantity for power generation would be the highest and account for∼60%of all water resources,the optimal water quantity for water supply would account for∼35%,while the optimal surplus water released from the reservoir would be the lowest at≤5%.In addition,climate change and reservoir initial storage would greatly affect the surplus water quantity but not the power generation or water supply quantity.In general,the SWAT-ILMP model is applicable and effective for water resource prediction and management systems.The results from different scenarios can provide multiple alternatives to support rational water resource allocation in the study area.
文摘Water resources of a country constitute one of its vital assets that significantly contribute to the socio-economic development and poverty eradication. However, this resource is unevenly distributed in both time and space. The major source of water for these resources is direct rainfall, which is recently experiencing variability that threatens the distribution of resources and water availability in Uganda. The annual rainfall received in Uganda varies from 500 mm to 2800 mm, with an average of 1180 mm received in two main seasons. The spatial distribution of rainfall has resulted into a network of great rivers and lakes that possess big potential for development. These resources are being developed and depleted at a fast rate, a situation that requires assessment to establish present status of water resources in the country. The paper reviews the characteristics, availability, demand and importance of present day water resources in Uganda as well as describing the various issues, challenges and management of water resources of the country.
文摘Until the early 1990s the Azraq basin in Jordan was covered by a huge wetland in the central parts representing a source of fresh water for all purposes. The presence of such wetland in the desert created a natural pathway for migratory birds. Man made and natural impacts caused severe depletion of this basin and the oasis disappeared in the early 1990s. Under a GIS environment MAR layers were prepared for the Azraq basin. MAR mapping showed a very high and high potentials over 20.55% and 61.63% of the total basin area respectively;while the low potential areas represent only 4.03% of the total area.
文摘Korean employers notoriously practice seniority-based personnel management, rather than one prioritizing workers’ skills or performance, and this has changed only slowly amid the evolving business landscape and advancing labor standards. This study contributes to understanding this phenomenon by assessing Korean firms’ promotion criteria and practices over the past decade across distinct phases of industry business cycles, and between the economy’s primary and secondary sectors. Primary-sector firms are shown to be less likely than secondary-sector firms to base their promotion decisions on the analysis of workers’ achievements and colleague ratings, but rather on their performance of core job duties. Primary-sector firms have more advancement steps within their management ranks, and longer wait time until promotion at all ranks. Secondary-sector firms are flatter hierarchically, featuring shorter time to promotion at all ranks and fewer advancement steps, but also a lower fraction of promotions based on special merit. Firms’ promotion practices change over the business cycle. During expansionary years, the hierarchical dispersion of workers within organizations widens, particularly among primary-sector firms, with more workers remaining as regular staff but more managers promoted to senior management. As firms recruit more regular staff, years to promotion to managerial positions, and the count of advancement steps increase. Business expansion induces firms to streamline promotions to management based on colleague ratings subject to lesser review of workers’ own achievements. Over the past decade, promotions by special merit have receded while those by colleague ratings have gone up. Firms are thus apparently not transitioning toward merit- and achievement-based promotions, and continue relying on subjective colleague ratings and job-content analysis in their stagnant hierarchical structures. This has implications for workers and for policymakers tasked with ushering in more inclusive, objective and meritocratic personnel management practices.