To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to dis...To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin) and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.展开更多
This article deals with assessment of changes in ice cover duration and maximum ice cover thickness for the last three decades compared with the previous period by the example of observation data for 28 hydrometric st...This article deals with assessment of changes in ice cover duration and maximum ice cover thickness for the last three decades compared with the previous period by the example of observation data for 28 hydrometric stations on rivers and 10 hydrological stations on lakes. Estimations of homogeneity and trends of long term serious of above mentioned rivers and lakes ice regime characteristics for three time periods were carried out using Student and Fisher criteria. Assessment of changes in ice regime characteristics for the period 1980-2010 compared with the period of stationary climate (from the beginning of observations until 1979) using two methodological approaches was made. The results can be used for solving problems of economy branches adaptation in case of rivers and lakes used in winter conditions.展开更多
This article is concerned with assessment of changes in two critical characteristics of lake and river ice regime, namely ice cover duration and maximum ice thickness, in the period from the beginning of the 80s to th...This article is concerned with assessment of changes in two critical characteristics of lake and river ice regime, namely ice cover duration and maximum ice thickness, in the period from the beginning of the 80s to the present, which is characterized by higher temperatures in the Northern Hemisphere compared with the previous period. The above ice regime characteristics are often limiting factors in winter operation of lakes and rivers (navigation, hydraulic construction works in cold period, construction of ice roads etc.). Assessment of changes in ice characteristics of lakes and rivers has been made for 52 river and five lake gauging sites of the Asian part of Russia (APR) using long-term observation data from the Russian observing network. Long-term series of the above characteristics were divided into two periods: from 1955 to 1979 (the period of stationary climate) and from 1980 to 2014 (non-stationary climate) and assessed from the point of view of their homogeneity and trend significance by Student’s t-test. The research has found that at most of the sites in the APR, both ice cover duration and maximum ice thickness decreased during non-stationary climate period compared with the previous one. The greatest quantitative changes have occurred in the Eastern Siberia (average net decrease in ice cover duration amounted to 7 days.decade-1 and in maximum ice thickness-20 cm.decade-1) and in the Amur River basin (7 days.decade-1 and 17 cm.decade-1 respectively).展开更多
Based on the investigation and analysis of protection and restoration of aquatic ecosystems in rivers and lakes of China, the ideas and measures of restoring aquatic ecosystems were proposed to build healthy aquatic e...Based on the investigation and analysis of protection and restoration of aquatic ecosystems in rivers and lakes of China, the ideas and measures of restoring aquatic ecosystems were proposed to build healthy aquatic ecosystems of rivers and lakes in China, such as setting scientific and clear goals, improving the standard adopted by wastewater treatment plants, controlling sources of pollutants and intercepting pollutants, collec- tion of blue-green algae, water transfer, dredging, reducing the quantity of blue-green algae, restoring reed wetlands on a large scale, combing dredging and base raise of restored reed wetlands, making full use of microorganisms, and implementing effective management, technology integra- tion and innovation.展开更多
The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river ne...The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.展开更多
Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for ...Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.展开更多
Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the de...Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the development of transborder watershed.In this study,we used global historical land cover data,the hemeroby index model,and synthesized major historical events to analyze how human activity intensity changed in the Heilongjiang River(Amur River in Russia)watershed(HLRW).The results showed that there was a strong spatial heterogeneity in the variation of human activity intensity in the HLRW over the past century(1900-2016).On the Chinese side,the human activity intensity change shifted from the plain areas for agricultural reclamation to the mountainous areas for timber extraction.On the Russian side,human activity intensity changes mostly concentrated along the Trans-Siberian Railway and the Baikal-Amur Mainline.Localized variation of human activity intensity tended to respond to regional events while regionalized variation tends to reflect national policy change or broad international events.The similarities and differences between China and Russia in policies and positions in international events resulted in synchronous and asynchronous changes in human activity intensity.Meanwhile,policy shifts were often confined by the natural features of the watershed.These results reveal the historical origins and fundamental connotations of watershed development and contribute to formulating regional management policies that coordinate population,eco-nomic,social,and environmental activities.展开更多
Based on the meteorological data during 1959-2008 from five representative weather stations in the Urumqi River Basin and surrounding areas,the regional characteristics of temperature and precipitation in the basin fe...Based on the meteorological data during 1959-2008 from five representative weather stations in the Urumqi River Basin and surrounding areas,the regional characteristics of temperature and precipitation in the basin featuring multi-climatic zones were studied by means of some methods including wavelet analysis.As was shown in the results,the temperature in the whole Urumqi River Basin demonstrated a significant upward trend.The temperature increase particularly in autumn and winter made the greatest contribution to the marked ascent.The interdecadal temperature in the basin showed a tendency to decline before the period during 1970s-1980s while it was on the rise after 1990s on the whole.The most concentrated period of temperature mutations was in the late 1990s.At the same time,the precipitation also showed an escalating trend,which experienced a stage of unanimous upward trend after 1990s.The most concentrated period of precipitation mutations was in the early 1990s.展开更多
The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oa...The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region.展开更多
Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that t...Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual, decadal, and multi-decadal scales, caused by the periodic oscillations of precipitation, and E1 Nifio/Southern Oscillation (ENSO) af- fects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale. The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities, and human activities attribute more than precipitation to the reduction in the water discharge and sediment load, furthermore, water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load, respectively. The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.展开更多
Lakes in China have undergone considerable environmental changes during the past 50 years, e.g. lake level, water area changes, as did in the past several thousands years. The enhanced human activities, such as land r...Lakes in China have undergone considerable environmental changes during the past 50 years, e.g. lake level, water area changes, as did in the past several thousands years. The enhanced human activities, such as land reclamation, application of chemical fertilizer, land use and cover, irrigation and industrialization in the catchment etc., have played an important role on the recent decades' changes of these lakes, although constrained to a great extent by the natural impact. Comparative study on variations of lake volume (water level, depth and area) in the eastern and western lake regions of China during 1950-2000 indicated that, lake volume in the eastern region had approximately undergone a two-stage change, i.e. a dramatic decrease from the 1950s to 1970s, and a continuous increase between the 1980s and 1990s; while, in the western region, lake volume had been decreasing nearly all the time. Further studies on some typical lakes concluded that, climatic change was a primary factor for the variations of lake volume during the past 50 years, although human activities showed important effect.展开更多
Land use change in rural China since the 1980s, induced by institution reforms, urbanization, industrialization and population increase, has received more attention. However, case studies on how institution reforms af...Land use change in rural China since the 1980s, induced by institution reforms, urbanization, industrialization and population increase, has received more attention. However, case studies on how institution reforms affect farmers' livelihood strategies and drive land use change are scarce. By means of cropland plots investigations and interviews with farmers, this study examines livelihood strategy change and land use change in Danzam Village of Jinchuan County in the upper Dadu River watershed, eastern Tibetan Plateau, China. The results show that, during the collective system period, as surplus labor forces could not be transferred to the secondary and tertiary industries, they had to choose agricultural involution as their livelihood strategy, then the farmers had to produce more grains by land reclamation, increasing multiple cropping index, improving input of labor, fertilizer, pesticide and adopting advanced agricultural techniques. During the household responsibility system period, as labors being transferred to the secondary and tertiary industries, farmers chose livelihood diversification strategy. Therefore, labor input to grain planting was greatly reduced, which drove the transformation of grain to horticulture, vegetable or wasteland and decrease of multiple cropping index. This study provides a new insight into understanding linkages among institution reforms, livelihood strategy of smallholders and land use change in rural China.展开更多
Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta...Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.展开更多
1 Introduction Studies on lakes have become an important concern for many scientists since it is well known that lakes can monitor detailed information about ecological,hydrological and sedimentary cycles which can be
Based on the Late Paleozoic geological background and the latest exploration achievements of the Ordos Basin and North China platform, it is concluded that during the sedimentary period of Permian He 8 Member, the are...Based on the Late Paleozoic geological background and the latest exploration achievements of the Ordos Basin and North China platform, it is concluded that during the sedimentary period of Permian He 8 Member, the area in concern had multiple material sources, multiple river systems, flat terrain, shallow sedimentary water, widely distributed fluvial facies sand body and no continuous lake area, so alluvial river sedimentary system developed in the whole region. Based on stratigraphic correlation and division, and a large number of drilling and outcrop data, a comprehensive analysis of lithofacies and sedimentary facies types and distribution was carried out to reconstruct the ancient geographic pattern of the He 8 Member sedimentary period. The results of paleogeography restoration show that the area of Ordos Basin was the "runoff area" in the sedimentary slope in the western part of the North China platform during the sedimentary period of He 8 Member, the whole region was mainly alluvial plain sedimentation featuring alternate fluvial facies, flood plain facies and flood-plain lake facies. According to the results of flume deposition simulation experiment, a new sedimentary model of "alluvial river & flood-plain lake" is established, which reveals the genesis of large area gravel sand body in He 8 Member of this area and provides geological basis for the exploration of tight gas in the south of the basin.展开更多
LV(Lake Victoria)is valuable to the East African sub region and Africa in general,sources of water for LV are from its catchment areas and tributaries e.g.Kagera and Mara Rivers on Tanzania part.Apparently,catchment a...LV(Lake Victoria)is valuable to the East African sub region and Africa in general,sources of water for LV are from its catchment areas and tributaries e.g.Kagera and Mara Rivers on Tanzania part.Apparently,catchment areas in proximities of LV and on MR(Mara River),indeed on MRB(Mara River Basin)in particular,are experiencing increased anthropogenic activities such as mining,fishing,settlements,agriculture etc.,which lead to increased water usage,land degradation and environmental pollution.Such activities threaten the sustainability of the environment surrounding MRB and impliedly LV and its ecosystem.The level of water in LV is reported to be declining threatening its extinction.This paper is reporting on a study undertaken to establish the relationship between land cover changes with ground water discharge from specifically MRB into LV over the period of 24 years,i.e.1986 to 2010.Methodology used is assessment of vegetation changes by using remote sensing through analysis of TM(Thematic Mapper)Landsat Images of 1986,1994,2002 and 2010 ETM(Enhanced Thematic Mapper)Landsat images,from which respective land cover change maps were generated and compared with ground water levels from MRB.Results indicates that there is a significant decline of land cover and ground water flowing into LV from MRB,and that there is positive correlation between land cover changes and the quantity of ground water flowing from MRB to LV.This phenomenon is common to all tributaries of LV,thus leading to decline of water in LV.It is recommended that relevant government institutions should endeavor formulating policies to control excessive use of wetlands and drylands in the proximity of LV and MRB in particular,such that the flow of water to LV may be sustained.展开更多
Based on 35 a meteorological data and main crops planting data in Shiyang River basin meteorological station,the agricultural climate change,agricultural production,hydrology change and the influences on the crops lay...Based on 35 a meteorological data and main crops planting data in Shiyang River basin meteorological station,the agricultural climate change,agricultural production,hydrology change and the influences on the crops layout,planting in the basin were discussed.The results showed that the linear inclined rates of ≥0 ℃,10 ℃ accumulated temperature increase in the north-central part were bigger than in the south,and the heat resources increased evidently.The annual precipitation increased in the linear inclined rate which was 4.719 mm/10 a,and the annual runoff decreased in 0.274×109 m3/10 a velocity.The climate productivity increased in 134.62 kg/(hm2·10 a) velocity.In late spring and early summer,the regional drought increased evidently,and the frostless period prolonged.The sand storm decreased evidently.The gale in the south increased and decreased in the north-central part.The agricultural climate change made that the spring wheat planting zone advanced to the high-altitude area.The seeding date advanced,and the growth period shortened.It didn't favor for the yield formation.However,it was favorable to improve the yield and quality of thermophilous crops such as the corn,cotton and wine grape and so on.展开更多
The upper valley of Min River (102° 59′ –104° 14′ E, 31° 26′ – 33° 16′ N), which is consisted of the counties Wenchuan, Maoxian, Lixian, Heishui, and Songpan, refers to the part up to Dujiang...The upper valley of Min River (102° 59′ –104° 14′ E, 31° 26′ – 33° 16′ N), which is consisted of the counties Wenchuan, Maoxian, Lixian, Heishui, and Songpan, refers to the part up to Dujiangyan City, and locates on the transition zone from the Tibetan Plateau to the Si- chuan Basin. It is one of the most important forest areas in China, especially in Sichuan Province. Over past two decades, the landscape changed remarkably in the region. The 3S techniques (Remote Sensing (RS), Geographic Information System (GIS) and Global Position System (GPS)) were used to classify the images and analyze the landscape change. The remotely sensed data of Landsat TM 1986 and Landsat ETM+ 2000 were used to analyze the landscape change of the region. The landscape were classified into 10 types of cropland, for- est, shrub land, economic forest, grassland, build up land, river, lake, swamp, and unused land. The results showed that: 1) the woodland and grassland were dominating landscape types in the upper valley of Min River, which is more than 91% of the study area; 2) the alteration of the landscape was mainly happened among forest, shrub land, grassland, economic forest, cropland, and build up land, where forest de- creased from 51.17% to 47.56%; 3) the landscape fragmentation in the upper valley of Min River was aggravated from 1986 to 2000.展开更多
The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by...The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.展开更多
Studies indicate that the climate has experienced a dramatic change in the Heihe River Basin with scope of temperature rise reaching 0.5-1.1 o C in the 1990s compared to the mean value of the per...Studies indicate that the climate has experienced a dramatic change in the Heihe River Basin with scope of temperature rise reaching 0.5-1.1 o C in the 1990s compared to the mean value of the period 1960-1990, precipitation increased 18.5 mm in the 1990s compared to the 1950s, and 6.5 mm in the 1990s compared to the mean value of the period 1960-1990, water resources decreased 2.6×10 8 m 3 in the 1990s compared to the 1950s, and 0.4×10 8 m 3 in the 1990s compared to the mean value of the period 1960-1990. These changes have exerted a greater effect on the local environment and socio-economy, and also made the condition worsening in water resources utilizations in the Heihe Rver Basin.展开更多
文摘To enable local water resource management and maintenance of ecosystem integrity and to protect and mitigate against flood and drought, it is necessary to determine changes in long-term series of streamflow and to distinguish the roles that climate change and human disturbance play in these changes. A review of previous research on the detection and attribution of observed changes in annual runoff in China shows a decrease in annual runoff since the 1950s in northern China in areas such as the Songhuajiang River water resources zone, the Liaohe River water resources zone, the Haihe River water resources zone, the Yellow River water resources zone, and the Huaihe River water resources Zone. Furthermore, abrupt changes in annual runoff occurred mostly in the 1970s and 1980s in all the above zones, except for some of the sub-basins in the middle Yellow River where abrupt change occurred in the 1990s. Changes in annual runoff are found to be mainly caused by climate change in the western Songhuajiang River basin, the upper mainstream of the Yangtze River, and the western Pearl River basin, which shows that studies on the impact of climate change on future water resources under different climate change scenarios are required to enable planning and management by agencies in these river basins. However, changes in annual runoff were found to be mainly caused by human activities in most of the catchments in northern China (such as the southern Songhuajiang River, Liaohe River, Haihe River, the lower reach and some of the catchments within the middle Yellow River basin) and in middle-eastern China, such as the Huaihe River and lower mainstream of the Yangtze River. This suggests that current hydro-climatic data can continue to be used in water-use planning and that policymakers need to focus on water resource management and protection.
文摘This article deals with assessment of changes in ice cover duration and maximum ice cover thickness for the last three decades compared with the previous period by the example of observation data for 28 hydrometric stations on rivers and 10 hydrological stations on lakes. Estimations of homogeneity and trends of long term serious of above mentioned rivers and lakes ice regime characteristics for three time periods were carried out using Student and Fisher criteria. Assessment of changes in ice regime characteristics for the period 1980-2010 compared with the period of stationary climate (from the beginning of observations until 1979) using two methodological approaches was made. The results can be used for solving problems of economy branches adaptation in case of rivers and lakes used in winter conditions.
文摘This article is concerned with assessment of changes in two critical characteristics of lake and river ice regime, namely ice cover duration and maximum ice thickness, in the period from the beginning of the 80s to the present, which is characterized by higher temperatures in the Northern Hemisphere compared with the previous period. The above ice regime characteristics are often limiting factors in winter operation of lakes and rivers (navigation, hydraulic construction works in cold period, construction of ice roads etc.). Assessment of changes in ice characteristics of lakes and rivers has been made for 52 river and five lake gauging sites of the Asian part of Russia (APR) using long-term observation data from the Russian observing network. Long-term series of the above characteristics were divided into two periods: from 1955 to 1979 (the period of stationary climate) and from 1980 to 2014 (non-stationary climate) and assessed from the point of view of their homogeneity and trend significance by Student’s t-test. The research has found that at most of the sites in the APR, both ice cover duration and maximum ice thickness decreased during non-stationary climate period compared with the previous one. The greatest quantitative changes have occurred in the Eastern Siberia (average net decrease in ice cover duration amounted to 7 days.decade-1 and in maximum ice thickness-20 cm.decade-1) and in the Amur River basin (7 days.decade-1 and 17 cm.decade-1 respectively).
文摘Based on the investigation and analysis of protection and restoration of aquatic ecosystems in rivers and lakes of China, the ideas and measures of restoring aquatic ecosystems were proposed to build healthy aquatic ecosystems of rivers and lakes in China, such as setting scientific and clear goals, improving the standard adopted by wastewater treatment plants, controlling sources of pollutants and intercepting pollutants, collec- tion of blue-green algae, water transfer, dredging, reducing the quantity of blue-green algae, restoring reed wetlands on a large scale, combing dredging and base raise of restored reed wetlands, making full use of microorganisms, and implementing effective management, technology integra- tion and innovation.
基金Under the auspices of Special Fund for Scientific Research in the Public Interestgranted by Ministry of Water Resources(No.2012010072,200701024)+3 种基金Key Program of National Natural Science Foundation of China(No.40730635)Open Foundation of State Key Laboratory of Hydrology-Water Resources and Hydraulic Engineering(No.2011491111)Research Foundation of Nanjing University of Information Science and Technology(No.20100406)a Project Funded by the Priority Academic Program Development of Jiangsu Higher Education Institutions(PAPD)
文摘The typical regions of the Taihu Lake Basin,China,were selected to analyze the variation characteristics of river-lake networks under intensive human activities.The characteristics of the fractal dimension of river networks and lakes for different periods were investigated and the influences of river system evolution on water level changes were further explored through the comparison of their fractal characters.The results are as follows:1) River network development of the study area is becoming more monotonous and more simple;the number of lakes is reducing significantly,and the water surface ratio has dropped significantly since the 1980s.2) The box dimension of the river networks in all the cities of the study area decreased slowly from the 1960s to the 1980s,while the decrease was significant from the 1980s to the 2000s.The variations of lake correlation dimension are similar to those of the river network box dimensions.This is unfavorable for the storage capacity of the river networks and lakes.3) The Hurst exponents of water levels were all between 0.5 and 1.0 from the 1960s to the 1980s,while decreased in the 2000s,indicating the decline in persistence and increase in the complexity of water level series.The paper draws a conclusion that the relationship between the fractal dimension of river-lake networks and the Hurst exponents of the water level series can reveal the impacts of river system changes on flood disasters to some extent:the disappearance of river networks and lakes will increase the possibility of flood occurrence.
基金Under the auspices of National Natural Science Foundation of China (No.42171414,41771429)the Open Fund of Guangdong Enterprise Key Laboratory for Urban SensingMonitoring and Early Warning (No.2020B121202019)。
文摘Carbon storage of terrestrial ecosystems plays a vital role in advancing carbon neutrality. Better understanding of how land use changes affect carbon storage in urban agglomeration will provide valuable guidance for policymakers in developing effective regional conservation policies. Taking the Pearl River Delta Urban Agglomeration(PRDUA) in China as an example, we examined the heterogeneous response of carbon storage to land use changes in 1990–2018 from a combined view of administrative units and physical entities. The results indicate that the primary change in land use was due to the expansion of construction land(5897.16 km2). The carbon storage in PRDUA decreased from 767.34 Tg C in 1990 to 725.42 Tg C in 2018 with a spatial pattern of high wings and the low middle. The carbon storage loss was largely attributed to construction land expansion(55.74%), followed by forest degradation(54.81%). Changes in carbon storage showed significant divergences in different sized cities and hierarchical boundaries. The coefficients of geographically weighted regression(GWR) reveal that the alteration in carbon storage in Guangzhou City was more responsive to changes in construction land(-0.11) compared to other cities, while that in Shenzhen was mainly affected by the dynamics of forest land(8.32). The change in carbon storage was primarily influenced by the conversion of farmland within urban extent(5.05) and the degradation of forest land in rural areas(5.82). Carbon storage changes were less sensitive to the expansion of construction land in the urban center, urban built-up area, and ex-urban built-up area, with the corresponding GWR coefficients of 0.19, 0.04, and 0.02. This study necessitates the differentiated protection strategies of carbon storage in urban agglomerations.
基金Under the auspices of National Key Research and Development Program of China(No.2017YFA0604403)National Natural Science Foundation of China(No.41801108)。
文摘Human activities in a transborder watershed are complex under the influence of domestic policies,international relations,and global events.Understanding the forces driving human activity change is important for the development of transborder watershed.In this study,we used global historical land cover data,the hemeroby index model,and synthesized major historical events to analyze how human activity intensity changed in the Heilongjiang River(Amur River in Russia)watershed(HLRW).The results showed that there was a strong spatial heterogeneity in the variation of human activity intensity in the HLRW over the past century(1900-2016).On the Chinese side,the human activity intensity change shifted from the plain areas for agricultural reclamation to the mountainous areas for timber extraction.On the Russian side,human activity intensity changes mostly concentrated along the Trans-Siberian Railway and the Baikal-Amur Mainline.Localized variation of human activity intensity tended to respond to regional events while regionalized variation tends to reflect national policy change or broad international events.The similarities and differences between China and Russia in policies and positions in international events resulted in synchronous and asynchronous changes in human activity intensity.Meanwhile,policy shifts were often confined by the natural features of the watershed.These results reveal the historical origins and fundamental connotations of watershed development and contribute to formulating regional management policies that coordinate population,eco-nomic,social,and environmental activities.
基金Supported by National Key Basic Research Development Program of China(2010CB951003,2007CB411501)Knowledge Innovation Program of Chinese Academy of Sciences(KZCX2-EW-311,KZCX2-YW127)+2 种基金Project Funded by National Natural Science Foundation of China(40631001,9102501240571033,40701034,40371028, J0630966,40701035)Autonomous Subject of State Key Laboratory of Cryospheric Sciences(SKLCS-ZZ-2010-04)~~
文摘Based on the meteorological data during 1959-2008 from five representative weather stations in the Urumqi River Basin and surrounding areas,the regional characteristics of temperature and precipitation in the basin featuring multi-climatic zones were studied by means of some methods including wavelet analysis.As was shown in the results,the temperature in the whole Urumqi River Basin demonstrated a significant upward trend.The temperature increase particularly in autumn and winter made the greatest contribution to the marked ascent.The interdecadal temperature in the basin showed a tendency to decline before the period during 1970s-1980s while it was on the rise after 1990s on the whole.The most concentrated period of temperature mutations was in the late 1990s.At the same time,the precipitation also showed an escalating trend,which experienced a stage of unanimous upward trend after 1990s.The most concentrated period of precipitation mutations was in the early 1990s.
基金supported by the National Natural Science Foundation of China (41630859)the Strategic Priority Research Program of the Chinese Academy of Sciences (XDA19030204)
文摘The increasing shortage in water resources is a key factor affecting sustainable socio-economic development in the arid region of Northwest China(ARNC). Water shortages also affect the stability of the region's oasis ecosystem. This paper summarizes the hydrological processes and water cycle of inland river basins in the ARNC, focusing on the following aspects: the spatial-temporal features of water resources(including air water vapor resources, runoff, and glacial meltwater) and their driving forces; the characteristics of streamflow composition in the inland river basins; the characteristics and main controlling factors of baseflow in the inland rivers; and anticipated future changes in hydrological processes and water resources. The results indicate that:(1) although the runoff in most inland rivers in the ARNC showed a significant increasing trend, both the glaciated area and glacial ice reserves have been reduced in the mountains;(2) snow melt and glacier melt are extremely important hydrological processes in the ARNC, especially in the Kunlun and Tianshan mountains;(3) baseflow in the inland rivers of the ARNC is the result of climate change and human activities, with the main driving factors being the reduction in forest area and the over-exploitation and utilization of groundwater in the river basins; and(4) the contradictions among water resources, ecology and economy will further increase in the future. The findings of this study might also help strengthen the ecological, economic and social sustainable development in the study region.
基金Under the auspices of Major State Basic Research Development Program of China(No.2010CB951202)Ocean Public Welfare Scientific Research Project,State Oceanic Administration of the People's Republic of China(No.200805063)
文摘Based on the data from gauging stations, the changes in water discharge and sediment load of the Huanghe (Yellow) River were analyzed by using the empirical mode decomposition (EMD) method. The results show that the periodic oscillation of water discharge and sediment load of the Huanghe River occurs at the interannual, decadal, and multi-decadal scales, caused by the periodic oscillations of precipitation, and E1 Nifio/Southern Oscillation (ENSO) af- fects water discharge by influencing precipitation distribution and contributes to periodic varations in precipitation and water discharge at interannual timescale. The water discharge and sediment load of the Huanghe River have decreased since the 1960s under the influence of precipitation and huamn activities, and human activities attribute more than precipitation to the reduction in the water discharge and sediment load, furthermore, water abstraction and water-soil conservation practices are the main causes of the decrease in water discharge and sediment load, respectively. The reduction in sediment load has directly impacted on the lower reaches of the Huanghe River and the river delta, causing considerable erosion of the river channel in the lower reaches since the 1970s along with River Delta changing siltation into erosion around 2000.
基金National Natural Science Foundation of China, No.40771197 No.40472085 The Natural Science Foundation of Jiangsu Province, No.BK2007534 We are indebted to Prof. Yu Ge and Prof. Wang Sumin for their continuous supports and encouragements to this study.
文摘Lakes in China have undergone considerable environmental changes during the past 50 years, e.g. lake level, water area changes, as did in the past several thousands years. The enhanced human activities, such as land reclamation, application of chemical fertilizer, land use and cover, irrigation and industrialization in the catchment etc., have played an important role on the recent decades' changes of these lakes, although constrained to a great extent by the natural impact. Comparative study on variations of lake volume (water level, depth and area) in the eastern and western lake regions of China during 1950-2000 indicated that, lake volume in the eastern region had approximately undergone a two-stage change, i.e. a dramatic decrease from the 1950s to 1970s, and a continuous increase between the 1980s and 1990s; while, in the western region, lake volume had been decreasing nearly all the time. Further studies on some typical lakes concluded that, climatic change was a primary factor for the variations of lake volume during the past 50 years, although human activities showed important effect.
基金Under the auspices of National Natural Science Foundation of China (No. 40601006, 40471009)National Basic Rsearch Program of China (No. 2005CB422006)
文摘Land use change in rural China since the 1980s, induced by institution reforms, urbanization, industrialization and population increase, has received more attention. However, case studies on how institution reforms affect farmers' livelihood strategies and drive land use change are scarce. By means of cropland plots investigations and interviews with farmers, this study examines livelihood strategy change and land use change in Danzam Village of Jinchuan County in the upper Dadu River watershed, eastern Tibetan Plateau, China. The results show that, during the collective system period, as surplus labor forces could not be transferred to the secondary and tertiary industries, they had to choose agricultural involution as their livelihood strategy, then the farmers had to produce more grains by land reclamation, increasing multiple cropping index, improving input of labor, fertilizer, pesticide and adopting advanced agricultural techniques. During the household responsibility system period, as labors being transferred to the secondary and tertiary industries, farmers chose livelihood diversification strategy. Therefore, labor input to grain planting was greatly reduced, which drove the transformation of grain to horticulture, vegetable or wasteland and decrease of multiple cropping index. This study provides a new insight into understanding linkages among institution reforms, livelihood strategy of smallholders and land use change in rural China.
基金Supported by Natural Science Foundation of Jiangsu Province,China (BK2011096)Survey of National Soil Situation and Pollution Control (GZTR20070302)
文摘Global warming has become one of important environmental issues, and will alter the spatial distribution of hydrology and water re- sources through accelerating atmospheric and hydrological cycles. Yangtze River Delta region, an economic center in China, has experienced a re- gional temperature increase since the 1960s, forming a heat island, and the warming rate has improved since the 1990s. The characteristics of hy- drology and water resources changed under regional climate warming. Here, the impacts of climate change on hydrology and water resources were discussed from the aspects of precipitation change, sea level rise, seawater invasion and water pollution in Yangtze River Delta region, China.
基金financially supported by NSFC grant 40971003DFG grants Wu 290/10-3, Wu 290/11-1
文摘1 Introduction Studies on lakes have become an important concern for many scientists since it is well known that lakes can monitor detailed information about ecological,hydrological and sedimentary cycles which can be
基金Supported by the China National Science and Technology Major Project(2011ZX05044,2011ZX05007-004)
文摘Based on the Late Paleozoic geological background and the latest exploration achievements of the Ordos Basin and North China platform, it is concluded that during the sedimentary period of Permian He 8 Member, the area in concern had multiple material sources, multiple river systems, flat terrain, shallow sedimentary water, widely distributed fluvial facies sand body and no continuous lake area, so alluvial river sedimentary system developed in the whole region. Based on stratigraphic correlation and division, and a large number of drilling and outcrop data, a comprehensive analysis of lithofacies and sedimentary facies types and distribution was carried out to reconstruct the ancient geographic pattern of the He 8 Member sedimentary period. The results of paleogeography restoration show that the area of Ordos Basin was the "runoff area" in the sedimentary slope in the western part of the North China platform during the sedimentary period of He 8 Member, the whole region was mainly alluvial plain sedimentation featuring alternate fluvial facies, flood plain facies and flood-plain lake facies. According to the results of flume deposition simulation experiment, a new sedimentary model of "alluvial river & flood-plain lake" is established, which reveals the genesis of large area gravel sand body in He 8 Member of this area and provides geological basis for the exploration of tight gas in the south of the basin.
文摘LV(Lake Victoria)is valuable to the East African sub region and Africa in general,sources of water for LV are from its catchment areas and tributaries e.g.Kagera and Mara Rivers on Tanzania part.Apparently,catchment areas in proximities of LV and on MR(Mara River),indeed on MRB(Mara River Basin)in particular,are experiencing increased anthropogenic activities such as mining,fishing,settlements,agriculture etc.,which lead to increased water usage,land degradation and environmental pollution.Such activities threaten the sustainability of the environment surrounding MRB and impliedly LV and its ecosystem.The level of water in LV is reported to be declining threatening its extinction.This paper is reporting on a study undertaken to establish the relationship between land cover changes with ground water discharge from specifically MRB into LV over the period of 24 years,i.e.1986 to 2010.Methodology used is assessment of vegetation changes by using remote sensing through analysis of TM(Thematic Mapper)Landsat Images of 1986,1994,2002 and 2010 ETM(Enhanced Thematic Mapper)Landsat images,from which respective land cover change maps were generated and compared with ground water levels from MRB.Results indicates that there is a significant decline of land cover and ground water flowing into LV from MRB,and that there is positive correlation between land cover changes and the quantity of ground water flowing from MRB to LV.This phenomenon is common to all tributaries of LV,thus leading to decline of water in LV.It is recommended that relevant government institutions should endeavor formulating policies to control excessive use of wetlands and drylands in the proximity of LV and MRB in particular,such that the flow of water to LV may be sustained.
基金Supported by The Special Project of Public Welfare Industry(Meteorology) Science Research(GYHY200806021)
文摘Based on 35 a meteorological data and main crops planting data in Shiyang River basin meteorological station,the agricultural climate change,agricultural production,hydrology change and the influences on the crops layout,planting in the basin were discussed.The results showed that the linear inclined rates of ≥0 ℃,10 ℃ accumulated temperature increase in the north-central part were bigger than in the south,and the heat resources increased evidently.The annual precipitation increased in the linear inclined rate which was 4.719 mm/10 a,and the annual runoff decreased in 0.274×109 m3/10 a velocity.The climate productivity increased in 134.62 kg/(hm2·10 a) velocity.In late spring and early summer,the regional drought increased evidently,and the frostless period prolonged.The sand storm decreased evidently.The gale in the south increased and decreased in the north-central part.The agricultural climate change made that the spring wheat planting zone advanced to the high-altitude area.The seeding date advanced,and the growth period shortened.It didn't favor for the yield formation.However,it was favorable to improve the yield and quality of thermophilous crops such as the corn,cotton and wine grape and so on.
文摘The upper valley of Min River (102° 59′ –104° 14′ E, 31° 26′ – 33° 16′ N), which is consisted of the counties Wenchuan, Maoxian, Lixian, Heishui, and Songpan, refers to the part up to Dujiangyan City, and locates on the transition zone from the Tibetan Plateau to the Si- chuan Basin. It is one of the most important forest areas in China, especially in Sichuan Province. Over past two decades, the landscape changed remarkably in the region. The 3S techniques (Remote Sensing (RS), Geographic Information System (GIS) and Global Position System (GPS)) were used to classify the images and analyze the landscape change. The remotely sensed data of Landsat TM 1986 and Landsat ETM+ 2000 were used to analyze the landscape change of the region. The landscape were classified into 10 types of cropland, for- est, shrub land, economic forest, grassland, build up land, river, lake, swamp, and unused land. The results showed that: 1) the woodland and grassland were dominating landscape types in the upper valley of Min River, which is more than 91% of the study area; 2) the alteration of the landscape was mainly happened among forest, shrub land, grassland, economic forest, cropland, and build up land, where forest de- creased from 51.17% to 47.56%; 3) the landscape fragmentation in the upper valley of Min River was aggravated from 1986 to 2000.
基金Under the auspices of the National Natural Science Foundation of China (No. 30570303)
文摘The shrinking and drying up of wetlands in arid and semiarid areas of China have been widely observed in the recent years, but there has been no consensus on whether the aggravation is caused by human activities or by global climate warming. For a better understanding of the cause, this study investigates the dynamic changes of Baiyangdian Lake wetland over the last 40 years. It is shown that since the 1980s, Baiyangdian Lake has suffered from an insufficient water input and shrunk considerably. By using SPSS 11.0, this study urines a detailed Analysis on the signifficance of the effects of the possible driving factors for the degradation. It is identified that the North China Plain has been warrnin~ up significantly in recent years, which causes a significant reduction in the precipitation and inflow to the lake. Although human disturbances such as the irrigation and storage of water in reservoirs do not play a decisive role, they accelerate the degradation and their effects should be minimized.
基金National Natural Science Foundation of China , No.40235053 Knowledge Innovation Project of CAS+1 种基金 No.KZCX3-SW-329 No.KZCX1-10-03-01
文摘Studies indicate that the climate has experienced a dramatic change in the Heihe River Basin with scope of temperature rise reaching 0.5-1.1 o C in the 1990s compared to the mean value of the period 1960-1990, precipitation increased 18.5 mm in the 1990s compared to the 1950s, and 6.5 mm in the 1990s compared to the mean value of the period 1960-1990, water resources decreased 2.6×10 8 m 3 in the 1990s compared to the 1950s, and 0.4×10 8 m 3 in the 1990s compared to the mean value of the period 1960-1990. These changes have exerted a greater effect on the local environment and socio-economy, and also made the condition worsening in water resources utilizations in the Heihe Rver Basin.