Using a three-dimensional coupled biophysical model,we simulated the responses of a lowtrophic ecosystem in the East China Sea(ECS)to long-term changes in nutrient load from the Changjiang(Yangtze)River over the perio...Using a three-dimensional coupled biophysical model,we simulated the responses of a lowtrophic ecosystem in the East China Sea(ECS)to long-term changes in nutrient load from the Changjiang(Yangtze)River over the period of 1960–2005.Two major factors aff ected changes in nutrient load:changes in river discharge and the concentration of nutrients in the river water.Increasing or decreasing Changjiang discharge induced different responses in the concentrations of nutrients,phytoplankton,and detritus in the ECS.Changes in dissolved inorganic nitrogen(DIN),silicate(SIL),phytoplankton,and detritus could be identified over a large area of the ECS shelf,but changes in dissolved inorganic phosphate(DIP)were limited to a small area close to the river mouth.The high DIN:DIP and SIL:DIP ratios in the river water were likely associated with the diff erent responses in DIN,DIP,and SIL.As DIP is a candidate limiting nutrient,perturbations in DIP resulting from changes in the Changjiang discharge are quickly consumed through primary production.It is interesting that an increase in the Changjiang discharge did not always lead to an increase in phytoplankton levels in the ECS.Phytoplankton decreases could be found in some areas close to the river mouth.A likely cause of the reduction in phytoplankton was a change in the hydrodynamic field associated with the river plume,although the present model is not suitable for examining the possibility in detail.Increases in DIN and DIP concentrations in the river water primarily led to increases in DIN,DIP,phytoplankton,and detritus levels in the ECS,whereas decreases in the SIL concentration in river water led to lower SIL concentrations in the ECS,indicating that SIL is not a limiting nutrient for photosynthesis,based on our model results from 1960 to 2005.In both of the above-mentioned cases,the sediment accumulation rate of detritus exhibited a large spatial variation near the river mouth,suggesting that core sample data should be carefully interpreted.展开更多
The Changjiang River in China was dammed in 2003. The possible changes in matters fluxes from the river downstream after the completion of Three Gorges Dam and their potential impacts on the ecosystem of the East Chin...The Changjiang River in China was dammed in 2003. The possible changes in matters fluxes from the river downstream after the completion of Three Gorges Dam and their potential impacts on the ecosystem of the East China Sea are discussed . The estuarine and coastal waters in the East China Sea were heavily fertilized by the inflow of nutrient-rich freshwater from the Changjiang River, which has led to severe eutrophication and frequent harmful algal blooms ,thus worsening the ecosystem health in this area. Analy- sis showed that the nutrient loadings are very likely to be reduced in the lower Changjiang River due to the construction of Three Gorges Dam. Especially for the total phosphorus, the discharges to the East China Sea will be reduced by one-third, which would relieve the severe eutrophication in this area. However, the expected decrease in the riverine silicate discharge would lead the ratio of silicon to nitrogen to be much less than 1 in the estuarine and coastal waters and thus may cause an elevation of flagellate growth. The changes in the annual water discharges and their seasonal distributions below the dam will be minor. Reduction of suspended particulate matter loading, due to the sedimentation behind the dam, will reduce the nutrient loadings of the particulate form especially for phosphorus, and decrease the turbidity of estuarine and coastal waters. On the other hand, this may enhance the erosion of the delta and the coasts as well as modifythe benthic ecosystem.展开更多
基金Supported by the National Basic Research Program of China(973 Program)(No.2012CB956004)the National Natural Science Foundation of China(NSFC)(No.41576010)+5 种基金the JSPS KAKENHI(Nos.JP26241009,JP26287116,JPH05821)the Fundamental Research Funds for Central Universities from the Ministry of Education of China(No.201512004)to X.Guothe Strategic Priority Research Program of Chinese Academy of Sciences(No.XDA11020305)the NSFC(No.41276016)the National Key Research and Development Program of China(No.2016YFA0601301)the Ministry of Education,Culture,Sports,Science and Technology,Japan(MEXT),under a Joint Usage/Research Center,Leading Academia in Marine and Environment Pollution Research(LaMer)Project to L.Zhao
文摘Using a three-dimensional coupled biophysical model,we simulated the responses of a lowtrophic ecosystem in the East China Sea(ECS)to long-term changes in nutrient load from the Changjiang(Yangtze)River over the period of 1960–2005.Two major factors aff ected changes in nutrient load:changes in river discharge and the concentration of nutrients in the river water.Increasing or decreasing Changjiang discharge induced different responses in the concentrations of nutrients,phytoplankton,and detritus in the ECS.Changes in dissolved inorganic nitrogen(DIN),silicate(SIL),phytoplankton,and detritus could be identified over a large area of the ECS shelf,but changes in dissolved inorganic phosphate(DIP)were limited to a small area close to the river mouth.The high DIN:DIP and SIL:DIP ratios in the river water were likely associated with the diff erent responses in DIN,DIP,and SIL.As DIP is a candidate limiting nutrient,perturbations in DIP resulting from changes in the Changjiang discharge are quickly consumed through primary production.It is interesting that an increase in the Changjiang discharge did not always lead to an increase in phytoplankton levels in the ECS.Phytoplankton decreases could be found in some areas close to the river mouth.A likely cause of the reduction in phytoplankton was a change in the hydrodynamic field associated with the river plume,although the present model is not suitable for examining the possibility in detail.Increases in DIN and DIP concentrations in the river water primarily led to increases in DIN,DIP,phytoplankton,and detritus levels in the ECS,whereas decreases in the SIL concentration in river water led to lower SIL concentrations in the ECS,indicating that SIL is not a limiting nutrient for photosynthesis,based on our model results from 1960 to 2005.In both of the above-mentioned cases,the sediment accumulation rate of detritus exhibited a large spatial variation near the river mouth,suggesting that core sample data should be carefully interpreted.
基金The National Key Basic Research Program of Ministry of Science and Technology of China under contract No.2001CB4097the Foundation of Key Laboratory of Marine Ecosystem and Biogeochemistry of State Oceanic Administration of China under contract No.LMEB200603.
文摘The Changjiang River in China was dammed in 2003. The possible changes in matters fluxes from the river downstream after the completion of Three Gorges Dam and their potential impacts on the ecosystem of the East China Sea are discussed . The estuarine and coastal waters in the East China Sea were heavily fertilized by the inflow of nutrient-rich freshwater from the Changjiang River, which has led to severe eutrophication and frequent harmful algal blooms ,thus worsening the ecosystem health in this area. Analy- sis showed that the nutrient loadings are very likely to be reduced in the lower Changjiang River due to the construction of Three Gorges Dam. Especially for the total phosphorus, the discharges to the East China Sea will be reduced by one-third, which would relieve the severe eutrophication in this area. However, the expected decrease in the riverine silicate discharge would lead the ratio of silicon to nitrogen to be much less than 1 in the estuarine and coastal waters and thus may cause an elevation of flagellate growth. The changes in the annual water discharges and their seasonal distributions below the dam will be minor. Reduction of suspended particulate matter loading, due to the sedimentation behind the dam, will reduce the nutrient loadings of the particulate form especially for phosphorus, and decrease the turbidity of estuarine and coastal waters. On the other hand, this may enhance the erosion of the delta and the coasts as well as modifythe benthic ecosystem.