We find that a conserved mutation residue Glu to residue Asp (E303D), which both have the same polar and charged properties, makes Kit2.1 protein lose its function. To understand the mechanism, we identify three int...We find that a conserved mutation residue Glu to residue Asp (E303D), which both have the same polar and charged properties, makes Kit2.1 protein lose its function. To understand the mechanism, we identify three interactions which control the conformation change and maintain the function of the Kit2.1 protein by combining homology modeling and molecular dynamics with targeted molecular dynamics. We find that the E303D mutation weakens these interactions and results in the loss of the related function. Our data indicate that not only the amino residues but also the interactions determine the function of proteins.展开更多
The stromal interaction molecule(STIM)-calcium release-activated calcium channel protein(ORAI) and inositol1,4,5-trisphosphate receptors(IP_3Rs) play pivotal roles in the modulation of Ca^(2+)-regulated pathways from ...The stromal interaction molecule(STIM)-calcium release-activated calcium channel protein(ORAI) and inositol1,4,5-trisphosphate receptors(IP_3Rs) play pivotal roles in the modulation of Ca^(2+)-regulated pathways from gene transcription to cell apoptosis by driving calcium-dependent signaling processes.Increasing evidence has implicated the dysregulation of STIM-ORAI and IP_3Rs in tumorigenesis and tumor progression.By controlling the activities,structure,and/or expression levels of these Ca^(2+)-transporting proteins,malignant cancer cells can hijack them to drive essential biological functions for tumor development.However,the molecular mechanisms underlying the participation of STIM-ORAI and IP_3Rs in the biological behavior of cancer remain elusive.In this review,we summarize recent advances regarding STIM-ORAI and IP_3Rs and discuss how they promote cell proliferation,apoptosis evasion,and cell migration through temporal and spatial rearrangements in certain types of malignant cells.An understanding of the essential roles of STIM-ORAI and IP_3Rs may provide new pharmacologic targets that achieve a better therapeutic effect by inhibiting their actions in key intracellular signaling pathways.展开更多
In order to illustrate the ion transport mechanism of chloride channel(Cl C) protein,a type of Cl C protein,Cl C-ec1,from Escherichia coli is embedded into an explicit membranewater system by using software VMD. The...In order to illustrate the ion transport mechanism of chloride channel(Cl C) protein,a type of Cl C protein,Cl C-ec1,from Escherichia coli is embedded into an explicit membranewater system by using software VMD. Then a parallel molecular dynamics(MD) simulation is employed to equilibrate the Cl C-ec1 structure for 27.5 ns at temperature 298.15 K. Based on this equilibrated structure,we compute the channel geometric size variation and electrostatic potential distribution along the channel. Meanwhile,Cl^- transport process is simulated using oriented random walk method under variable external potential. The simulation result shows that Cl^- transport velocity depends on the width of the narrowest channel region. Mutation of negative glutamate E148 can produce positive potential,which is beneficial for Cl^- transport,around external Cl^- binding region in the channel. The simulated current-voltage curves about Cl^- transporting in Cl C-ec1 protein agree with Jayaram's experimental results.展开更多
The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were in...The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were investigated.Thirty-six Sprague-Dawley(SD) rats were immunized with saline(controls) or ovalbumin(OVA) with alum(asthma models).ASMCs were cultured from the lung of control and asthma rats.ASMCs were treated with diazoxide(the potent activator of mitoK ATP) or 5-hydroxydencanote(5-HD,the inhibitor of mitoK ATP).Rhodamine-123(R-123) was used to detect Δψm.The expression of PKCα protein was examined by using Western blotting,while PKCα mRNA expression was detected by using real-time PCR.The proliferation of ASMCs was measured by MTT assay and cell cycle analysis.In diazoxide-treated normal ASMCs,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and percentage of cells in S phase were markedly increased as compared with untreated controls.The ratio of G 0 /G 1 cells was decreased(P<0.05) in diazoxide-treated ASMCs from normal rats.However,there were no significant differences between the ASMCs from healthy rats treated with 5-HD and the normal control group.In untreated and diazoxide-treated ASMCs of asthmatic rats,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and the percentage of cells in S phase were increased in comparison to the normal control group.Furthermore,in comparison to ASMCs from asthmatic rats,these values were considerably increased in asthmatic group treated with diazoxide(P<0.05).After exposure to 5-HD for 24 h,these values were decreased as compared with asthma control group(P<0.05).In ASMCs of asthma,the signal transduction pathway of PKCα may be involved in cell proliferation,which is induced by the opening of mitoK ATP and the depolarization of Δψm.展开更多
Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were...Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were performed in Wistar rat hearts. In the first series of experiment, ischemic preconditioning was induced by left anterior descending occlusion (three, 5 min episodes separated by 5 min of reperfusion), ischemia-reperfusion injury was induced by 30 min coronary artery occlusion followed by 90 min reperfusion. Hemodynamics, infarct size and scores of ventricular arrhythmias were measured. The expression of Gαq/11 protein in the heart was measured by Western blot analysis in the second series. Results Ischemic preconditioning rats showed decreased infarct size and scores of ventricular arrhythmia vs non-IP control rats. The effect of IPC was significantly attenuated by glibenclamide (1 mg/kg, ip), a nonselective KATP channel inhibitor. IPC caused a significant increase in the expression of Gαq/11 protein. Conclusions Activations of Gαq/11 signal pathway and KATP channel played significant roles in the classical cardioprotection of ischemic precon-ditioning rat heart and might be an important mechanism of signal transduction pathway during the ischemic preconditioning.展开更多
The effects of protein kinase C (PKC) on the tension and the activity of voltage-dependent delayed rectifier potassium channel (K,,) were examined in normal and passively sensitized human airway smooth muscle (H...The effects of protein kinase C (PKC) on the tension and the activity of voltage-dependent delayed rectifier potassium channel (K,,) were examined in normal and passively sensitized human airway smooth muscle (HASM), by measuring tones and whole-cell patch clamp techniques, and the Kv activities and membrane potential (Em) were also detected. The results showed that phorbol 12-myristate 13-acetate (PMA), a PKC activator, caused a concentration-dependent constriction in normal HASM rings. The constriction of the passively sensitized muscle in asthma serum group was significantly higher than that of the normal group (P〈0.05), and the constrictions of both groups were completely abolished by PKC inhibitor Ro31-8220 and calcium channel inhibitor nifedipine. Kv activities of HASM cells were significantly inhibited by PMA, and the Em became more positive, as compared with the DMSO (a PMA menstruum)-treated group (P〈0.01). This effect could be blocked by Ro31-8220 (P〈0.01 ). It was concluded that activation of PKC could increase the tones of HASM, which might be related to the reduced Kv activity. In passively sensitized HASM rings, this effect was more notable.展开更多
基金Supported by the National Natural Science Foundation of China under Grant Nos 11247010,11175055,11475053 and 11347017the Natural Science Foundation of Hebei Province under Grant Nos C2012202079 and C201400305
文摘We find that a conserved mutation residue Glu to residue Asp (E303D), which both have the same polar and charged properties, makes Kit2.1 protein lose its function. To understand the mechanism, we identify three interactions which control the conformation change and maintain the function of the Kit2.1 protein by combining homology modeling and molecular dynamics with targeted molecular dynamics. We find that the E303D mutation weakens these interactions and results in the loss of the related function. Our data indicate that not only the amino residues but also the interactions determine the function of proteins.
文摘The stromal interaction molecule(STIM)-calcium release-activated calcium channel protein(ORAI) and inositol1,4,5-trisphosphate receptors(IP_3Rs) play pivotal roles in the modulation of Ca^(2+)-regulated pathways from gene transcription to cell apoptosis by driving calcium-dependent signaling processes.Increasing evidence has implicated the dysregulation of STIM-ORAI and IP_3Rs in tumorigenesis and tumor progression.By controlling the activities,structure,and/or expression levels of these Ca^(2+)-transporting proteins,malignant cancer cells can hijack them to drive essential biological functions for tumor development.However,the molecular mechanisms underlying the participation of STIM-ORAI and IP_3Rs in the biological behavior of cancer remain elusive.In this review,we summarize recent advances regarding STIM-ORAI and IP_3Rs and discuss how they promote cell proliferation,apoptosis evasion,and cell migration through temporal and spatial rearrangements in certain types of malignant cells.An understanding of the essential roles of STIM-ORAI and IP_3Rs may provide new pharmacologic targets that achieve a better therapeutic effect by inhibiting their actions in key intracellular signaling pathways.
基金Supported by the National Natural Science Foundation of China(11304123)the Scientific Research Foundation of Jianghan University(2013016)
文摘In order to illustrate the ion transport mechanism of chloride channel(Cl C) protein,a type of Cl C protein,Cl C-ec1,from Escherichia coli is embedded into an explicit membranewater system by using software VMD. Then a parallel molecular dynamics(MD) simulation is employed to equilibrate the Cl C-ec1 structure for 27.5 ns at temperature 298.15 K. Based on this equilibrated structure,we compute the channel geometric size variation and electrostatic potential distribution along the channel. Meanwhile,Cl^- transport process is simulated using oriented random walk method under variable external potential. The simulation result shows that Cl^- transport velocity depends on the width of the narrowest channel region. Mutation of negative glutamate E148 can produce positive potential,which is beneficial for Cl^- transport,around external Cl^- binding region in the channel. The simulated current-voltage curves about Cl^- transporting in Cl C-ec1 protein agree with Jayaram's experimental results.
基金supported by grants from Natural Science Foundation of Hubei Province,China (No. 2010CDB096)the National Key Technology R&D Program of the 12th National Five-year Development Plan of China (No. 2012BAI05B01)
文摘The effects of ATP-sensitive mitochondrial K + channel(mitoK ATP) on mitochondrial membrane potential(Δψm),cell proliferation and protein kinase C alpha(PKCα) expression in airway smooth muscle cells(ASMCs) were investigated.Thirty-six Sprague-Dawley(SD) rats were immunized with saline(controls) or ovalbumin(OVA) with alum(asthma models).ASMCs were cultured from the lung of control and asthma rats.ASMCs were treated with diazoxide(the potent activator of mitoK ATP) or 5-hydroxydencanote(5-HD,the inhibitor of mitoK ATP).Rhodamine-123(R-123) was used to detect Δψm.The expression of PKCα protein was examined by using Western blotting,while PKCα mRNA expression was detected by using real-time PCR.The proliferation of ASMCs was measured by MTT assay and cell cycle analysis.In diazoxide-treated normal ASMCs,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and percentage of cells in S phase were markedly increased as compared with untreated controls.The ratio of G 0 /G 1 cells was decreased(P<0.05) in diazoxide-treated ASMCs from normal rats.However,there were no significant differences between the ASMCs from healthy rats treated with 5-HD and the normal control group.In untreated and diazoxide-treated ASMCs of asthmatic rats,the R-123 fluorescence intensity,protein and mRNA levels of PKCα,MTT A values and the percentage of cells in S phase were increased in comparison to the normal control group.Furthermore,in comparison to ASMCs from asthmatic rats,these values were considerably increased in asthmatic group treated with diazoxide(P<0.05).After exposure to 5-HD for 24 h,these values were decreased as compared with asthma control group(P<0.05).In ASMCs of asthma,the signal transduction pathway of PKCα may be involved in cell proliferation,which is induced by the opening of mitoK ATP and the depolarization of Δψm.
文摘Objectives To investigate the effect of Gαq/11 signaling pathway and ATP-sensitive potassium channel ( KATP channel ) on ischemic preconditioning (IPC) protection in rat hearts. Methods Two series of experiments were performed in Wistar rat hearts. In the first series of experiment, ischemic preconditioning was induced by left anterior descending occlusion (three, 5 min episodes separated by 5 min of reperfusion), ischemia-reperfusion injury was induced by 30 min coronary artery occlusion followed by 90 min reperfusion. Hemodynamics, infarct size and scores of ventricular arrhythmias were measured. The expression of Gαq/11 protein in the heart was measured by Western blot analysis in the second series. Results Ischemic preconditioning rats showed decreased infarct size and scores of ventricular arrhythmia vs non-IP control rats. The effect of IPC was significantly attenuated by glibenclamide (1 mg/kg, ip), a nonselective KATP channel inhibitor. IPC caused a significant increase in the expression of Gαq/11 protein. Conclusions Activations of Gαq/11 signal pathway and KATP channel played significant roles in the classical cardioprotection of ischemic precon-ditioning rat heart and might be an important mechanism of signal transduction pathway during the ischemic preconditioning.
基金This project was supported by a grant from the National Natural Sciences Foundation of China (No. 30270583)
文摘The effects of protein kinase C (PKC) on the tension and the activity of voltage-dependent delayed rectifier potassium channel (K,,) were examined in normal and passively sensitized human airway smooth muscle (HASM), by measuring tones and whole-cell patch clamp techniques, and the Kv activities and membrane potential (Em) were also detected. The results showed that phorbol 12-myristate 13-acetate (PMA), a PKC activator, caused a concentration-dependent constriction in normal HASM rings. The constriction of the passively sensitized muscle in asthma serum group was significantly higher than that of the normal group (P〈0.05), and the constrictions of both groups were completely abolished by PKC inhibitor Ro31-8220 and calcium channel inhibitor nifedipine. Kv activities of HASM cells were significantly inhibited by PMA, and the Em became more positive, as compared with the DMSO (a PMA menstruum)-treated group (P〈0.01). This effect could be blocked by Ro31-8220 (P〈0.01 ). It was concluded that activation of PKC could increase the tones of HASM, which might be related to the reduced Kv activity. In passively sensitized HASM rings, this effect was more notable.