The finite strip method in structural analysis has been extended, and elastic-plastic large deformation spline finite strip method based on the Updated-Lagrange method (U. L. method) was established to simulate roll f...The finite strip method in structural analysis has been extended, and elastic-plastic large deformation spline finite strip method based on the Updated-Lagrange method (U. L. method) was established to simulate roll forming process of channel section with outer edge. The deformation characteristics of strip was analyzed, and the three-dimensional displacement field, strain field and stress field of deformed strip were got. The calculation example proves that the peak transverse pressing membrane strain is on the corner part of the deformed strip, and the peak longitudinal stretching strain is on the outer edge part of the deformed strip in front of rolls. In addition, the transverse deformation of the deformed strip is principal, and the longitudinal deformation is small.展开更多
Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under trans...Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.展开更多
The best hydraulic channel section makes the maximum flow capacity for the same flow cross-area, and the minimum cross-area and wetted perimeter for the same discharge. The construction cost can be reduced nearly to t...The best hydraulic channel section makes the maximum flow capacity for the same flow cross-area, and the minimum cross-area and wetted perimeter for the same discharge. The construction cost can be reduced nearly to the minimum at the same time The horizontal bottom parabolic section (HBP section) is a composite section. It is important for design to find the best combination form of the horizontal bottom and the parabolic sides. This paper studies the best hydraulic section and its hydraulic characteristics. The explicit formulae are proposed to determine the dimensions and the best combination form of the horizontal bottom and the parabolic sides. These explicit formulae and the parameters make it easy to design the channel. It is shown that the ratios of the surface width to the depth and the bottom width to the depth are constant for the best hydraulic section. The comparisons with the classic parabolic, rectangular, trapezoid, triangular, semi-cubic and horizontal-bottomed semi-cubic sections show that the HBP section has the largest flow capacity and the shortest wetted perimeter for the same flow area, and has the smallest flow area for the same discharge. It is indicated that the parabolic side parts of the best hydraulic HBP section are different from those of the classic section. The results of the best hydraulic section of the classic parabolic channel cannot be applied directly to the HBC section.展开更多
Structural health monitoring(SHM)is a research focus involving a large category of techniques performing in-situ identification of structural damage,stress,external loads,vibration signatures,etc.Among various SHM tec...Structural health monitoring(SHM)is a research focus involving a large category of techniques performing in-situ identification of structural damage,stress,external loads,vibration signatures,etc.Among various SHM techniques,those able to monitoring structural deformed shapes are considered as an important category.A novel method of deformed shape reconstruction for thinwalled beam structures was recently proposed by Xu et al.[1],which is capable of decoupling complex beam deformations subject to the combination of different loading cases,including tension/compression,bending and warping torsion,and also able to reconstruct the full-field displacement distributions.However,this method was demonstrated only under a relatively simple loading coupling cases,involving uni-axial bending and warping torsion.The effectiveness of the method under more complex loading cases needs to be thoroughly investigated.In this study,more complex deformations under the coupling between bi-axial bending and warping torsion was decoupled using the method.The set of equations for deformation decoupling was established,and the reconstruction algorithm for bending and torsion deformation were utilized.The effectiveness and accuracy of the method was examined using a thin-walled channel beam,relying on analysis results of finite element analysis(FEA).In the analysis,the influence of the positions of the measurement of surface strain distributions on the reconstruction accuracy was discussed.Moreover,different levels of measurement noise were added to the axial strain values based on numerical method,and the noise resistance ability of the deformation reconstruction method was investigated systematically.According to the FEA results,the effectiveness and precision of the method in complex deformation decoupling and reconstruction were demonstrated.Moreover,the immunity of the method to measurement noise was proven to be considerably strong.展开更多
River cutoff works have been implemented on Lower Jingjiang section for 30 years. Engineering practices have shown that channel straightening has been the river regulation measure for the permanent control of the mean...River cutoff works have been implemented on Lower Jingjiang section for 30 years. Engineering practices have shown that channel straightening has been the river regulation measure for the permanent control of the meandering Lower Jingjiang section. River cutoff have been carried out in accordance with the evolution property of meandering rivers and these works have brought about expected benefits. It has also been noted that certain aspects in river cutoff had not been fully understood. River cutoff is a dynamic engineering. River channel evolution properties shall be fully understood so as to adroitly guide actions according to circumstances in cutoff works. In addition, river channel evolution observation and engineering effectiveness monitoring should be strengthened with a view to update the designs. The diversion canals for channel shortening are of great importance that will account for the success or failure of river cutoff works. The newly formed river channels and the river regime control works on the adjacent upper and lower reaches are guarantees for river cutoff works to be brought into play in the long run.展开更多
On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to...On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.展开更多
The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radia...The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.展开更多
文摘The finite strip method in structural analysis has been extended, and elastic-plastic large deformation spline finite strip method based on the Updated-Lagrange method (U. L. method) was established to simulate roll forming process of channel section with outer edge. The deformation characteristics of strip was analyzed, and the three-dimensional displacement field, strain field and stress field of deformed strip were got. The calculation example proves that the peak transverse pressing membrane strain is on the corner part of the deformed strip, and the peak longitudinal stretching strain is on the outer edge part of the deformed strip in front of rolls. In addition, the transverse deformation of the deformed strip is principal, and the longitudinal deformation is small.
文摘Aspects of the general Vlasov theory are examined separately as applied to a thin-walled channel section cantilever beam under free-end end loading. In particular, the flexural bending and shear that arise under transverse shear and axial torsional loading are each considered theoretically. These analyses involve the location of the shear centre at which transverse shear forces when applied do not produce torsion. This centre, when taken to be coincident with the centre of twist implies an equivalent reciprocal behaviour. That is, an axial torsion applied concentric with the shear centre will twist but not bend the beam. The respective bending and shear stress conversions are derived for each action applied to three aluminium alloy extruded channel sections mounted as cantilevers with a horizontal principal axis of symmetry. Bending and shear are considered more generally for other thin-walled sections when the transverse loading axes at the shear centre are not parallel to the section = s centroidal axes of principal second moments of area. The fixing at one end of the cantilever modifies the St Venant free angular twist and the free warping displacement. It is shown from the Wagner-Kappus torsion theory how the end constrained warping generates an axial stress distribution that varies with the length and across the cross-section for an axial torsion applied to the shear centre. It should be mentioned here for wider applications and validation of the Vlasov theory that attendant papers are to consider in detail bending and torsional loadings applied to other axes through each of the centroid and the web centre. Therein, both bending and twisting arise from transverse shear and axial torsion applied to each position being displaced from the shear centre. Here, the influence of the axis position upon the net axial and shear stress distributions is to be established. That is, the net axial stress from axial torsional loading is identified with the sum of axial stress due to bending and axial stress arising from constrained warping displacements at the fixing. The net shear stress distribution overlays the distributions from axial torsion and that from flexural shear under transverse loading. Both arise when transverse forces are displaced from the shear centre.
基金Project supported by the Key Research and Develop-ment Program of Shandong Province(Grant No.2016GSF117038)the National Science and Technology Su-pport Program of China(Grant No.2015BAB07B02)+1 种基金the Development of Science and Technology Plan of Jinan City,China(Grant No.201302052)the Teaching and Research Projects of the University of Jinan(Grant No.J1641)
文摘The best hydraulic channel section makes the maximum flow capacity for the same flow cross-area, and the minimum cross-area and wetted perimeter for the same discharge. The construction cost can be reduced nearly to the minimum at the same time The horizontal bottom parabolic section (HBP section) is a composite section. It is important for design to find the best combination form of the horizontal bottom and the parabolic sides. This paper studies the best hydraulic section and its hydraulic characteristics. The explicit formulae are proposed to determine the dimensions and the best combination form of the horizontal bottom and the parabolic sides. These explicit formulae and the parameters make it easy to design the channel. It is shown that the ratios of the surface width to the depth and the bottom width to the depth are constant for the best hydraulic section. The comparisons with the classic parabolic, rectangular, trapezoid, triangular, semi-cubic and horizontal-bottomed semi-cubic sections show that the HBP section has the largest flow capacity and the shortest wetted perimeter for the same flow area, and has the smallest flow area for the same discharge. It is indicated that the parabolic side parts of the best hydraulic HBP section are different from those of the classic section. The results of the best hydraulic section of the classic parabolic channel cannot be applied directly to the HBC section.
基金the National Science Foundation of China(No.11602048 and No.51805068).
文摘Structural health monitoring(SHM)is a research focus involving a large category of techniques performing in-situ identification of structural damage,stress,external loads,vibration signatures,etc.Among various SHM techniques,those able to monitoring structural deformed shapes are considered as an important category.A novel method of deformed shape reconstruction for thinwalled beam structures was recently proposed by Xu et al.[1],which is capable of decoupling complex beam deformations subject to the combination of different loading cases,including tension/compression,bending and warping torsion,and also able to reconstruct the full-field displacement distributions.However,this method was demonstrated only under a relatively simple loading coupling cases,involving uni-axial bending and warping torsion.The effectiveness of the method under more complex loading cases needs to be thoroughly investigated.In this study,more complex deformations under the coupling between bi-axial bending and warping torsion was decoupled using the method.The set of equations for deformation decoupling was established,and the reconstruction algorithm for bending and torsion deformation were utilized.The effectiveness and accuracy of the method was examined using a thin-walled channel beam,relying on analysis results of finite element analysis(FEA).In the analysis,the influence of the positions of the measurement of surface strain distributions on the reconstruction accuracy was discussed.Moreover,different levels of measurement noise were added to the axial strain values based on numerical method,and the noise resistance ability of the deformation reconstruction method was investigated systematically.According to the FEA results,the effectiveness and precision of the method in complex deformation decoupling and reconstruction were demonstrated.Moreover,the immunity of the method to measurement noise was proven to be considerably strong.
文摘River cutoff works have been implemented on Lower Jingjiang section for 30 years. Engineering practices have shown that channel straightening has been the river regulation measure for the permanent control of the meandering Lower Jingjiang section. River cutoff have been carried out in accordance with the evolution property of meandering rivers and these works have brought about expected benefits. It has also been noted that certain aspects in river cutoff had not been fully understood. River cutoff is a dynamic engineering. River channel evolution properties shall be fully understood so as to adroitly guide actions according to circumstances in cutoff works. In addition, river channel evolution observation and engineering effectiveness monitoring should be strengthened with a view to update the designs. The diversion canals for channel shortening are of great importance that will account for the success or failure of river cutoff works. The newly formed river channels and the river regime control works on the adjacent upper and lower reaches are guarantees for river cutoff works to be brought into play in the long run.
文摘On the basis of the analysis of field thermogeochemical data along abnormal zones of a thermal stream in the Bukhara-Khiva, oil-and-gas region of the Turan (Tegermen, Chagakul, Shimoly Alat, Beshtepa) was succeeded to obtain important data on a deep structure of sites. Data of gas-chemical and geothermal observations show about confinedness of abnormal concentration of methane to zones of the increased values of the temperature field the measured values of temperatures (Tegermen Square and others). On geoelectric section mines 2-D of inversion of the MT-field depth of 4000 m are lower, among very high-resistance the chemogenic and carbonate deposits of the Paleozoic is traced the subvertical carrying-out abnormal zone. This zone is identified as the channel of a deep heat and mass transfer with which hydrocarbon (HC) deposits are connected. It is shown that electro-investigation when using a geophysical complex can and has to become “advancing” at exploration by oil and gas.
基金supported by the National Natural Science Foundation of China (Grant Nos 10574018 and 10574020)
文摘The non-dissociative charge-transfer processes in collisions between O^3+ and H2 are investigated by using the quantum-mechanical molecular-orbital coupled-channel (QMOCC) method. The adiabatic potentials and radial coupling matrix elements utilized in the QMOCC calculations are obtained with the spin-coupled valence-bond approach. Electronic and vibrational state-selective differential cross sections are presented for projectile energies of 0.1, 1.0 and 10.0eV/u in the H2 orientation angles of 45° and 89°. The electronic and the vibrational state-selective differential cross sections show similar behaviours: they decrease as the scattering angle increases, and beyond a specific angle the oscillating structures appear. Moreover, it is also found that the vibrational state-selective differential cross sections are strongly orientation-dependent, which provides a possibility to determine the orientations of molecule H2 by identifying the vibrational state-selective differential scattering processes.