Linear transfer function approximations of the fractional integrators 1Is~ with m ^- 0.80-0.99 with steps of 0.01 are calculated systemically from the fractional order calculus and frequency-domain approximation metho...Linear transfer function approximations of the fractional integrators 1Is~ with m ^- 0.80-0.99 with steps of 0.01 are calculated systemically from the fractional order calculus and frequency-domain approximation method. To illustrate the effectiveness for fractional functions, the magnitude Bode diagrams of the actual and approximate transfer functions 1Ism with a slope of -20m dB//decade are depicted. By using the transfer function approxima- tions of the fractional integrators, a new fractional-order nonlinear system is investigated through the bifurcation diagram and Lyapunov exponent. The corresponding circuit of the fractional-order system is designed and the experimental results match perfectly with the numerical simulations.展开更多
This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapun...This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov expo- nents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.展开更多
We present a generalized analytical solution to the normalized state equations of a class of coupled simple secondorder non-autonomous circuit systems. The analytical solutions thus obtained are used to study the sync...We present a generalized analytical solution to the normalized state equations of a class of coupled simple secondorder non-autonomous circuit systems. The analytical solutions thus obtained are used to study the synchronization dynamics of two different types of circuit systems, differing only by their constituting nonlinear element. The synchronization dynamics of the coupled systems is studied through two-parameter bifurcation diagrams, phase portraits, and time-series plots obtained from the explicit analytical solutions. Experimental figures are presented to substantiate the analytical results. The generalization of the analytical solution for other types of coupled simple chaotic systems is discussed. The synchronization dynamics of the coupled chaotic systems studied through two-parameter bifurcation diagrams obtained from the explicit analytical solutions is reported for the first time.展开更多
基金Supported by the National Natural Science Foundation of China under Grant No 51475246the Natural Science Foundation of Jiangsu Province under Grant No Bk20131402the Ministry-of-Education Overseas Returnees Start-up Research Fund under Grant No[2012]1707
文摘Linear transfer function approximations of the fractional integrators 1Is~ with m ^- 0.80-0.99 with steps of 0.01 are calculated systemically from the fractional order calculus and frequency-domain approximation method. To illustrate the effectiveness for fractional functions, the magnitude Bode diagrams of the actual and approximate transfer functions 1Ism with a slope of -20m dB//decade are depicted. By using the transfer function approxima- tions of the fractional integrators, a new fractional-order nonlinear system is investigated through the bifurcation diagram and Lyapunov exponent. The corresponding circuit of the fractional-order system is designed and the experimental results match perfectly with the numerical simulations.
基金Project supported by the National Natural Science Foundations of China (Grant Nos. 70571030 and 90610031)the Society Science Foundation from Ministry of Education of China (Grant No. 08JA790057)the Advanced Talents’ Foundation and Student’s Foundation of Jiangsu University (Grant Nos. 07JDG054 and 07A075)
文摘This paper reports a new hyperchaotic system by adding an additional state variable into a three-dimensional chaotic dynamical system. Some of its basic dynamical properties, such as the hyperchaotic attractor, Lyapunov expo- nents, bifurcation diagram and the hyperchaotic attractor evolving into periodic, quasi-periodic dynamical behaviours by varying parameter k are studied. An effective nonlinear feedback control method is used to suppress hyperchaos to unstable equilibrium. Furthermore, a circuit is designed to realize this new hyperchaotic system by electronic workbench (EWB). Numerical simulations are presented to show these results.
文摘We present a generalized analytical solution to the normalized state equations of a class of coupled simple secondorder non-autonomous circuit systems. The analytical solutions thus obtained are used to study the synchronization dynamics of two different types of circuit systems, differing only by their constituting nonlinear element. The synchronization dynamics of the coupled systems is studied through two-parameter bifurcation diagrams, phase portraits, and time-series plots obtained from the explicit analytical solutions. Experimental figures are presented to substantiate the analytical results. The generalization of the analytical solution for other types of coupled simple chaotic systems is discussed. The synchronization dynamics of the coupled chaotic systems studied through two-parameter bifurcation diagrams obtained from the explicit analytical solutions is reported for the first time.