In this work, we suggest a system for chaos-based encryption of electrocardiographic signals. It uses simple electronics organized around a colpitts chaotic oscillator. The system has been designed, implemented and te...In this work, we suggest a system for chaos-based encryption of electrocardiographic signals. It uses simple electronics organized around a colpitts chaotic oscillator. The system has been designed, implemented and tested. The encrypted signal has been decrypted and compared to the original ECG signal. Experimental results were analysed and proved encouraging.展开更多
This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by inform...This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.展开更多
Bursting is a diverse and common phenomenon in neuronal activation patterns and it indicates that fast action voltage spiking periods are followed by resting periods.The interspike interval(ISI)is the time between suc...Bursting is a diverse and common phenomenon in neuronal activation patterns and it indicates that fast action voltage spiking periods are followed by resting periods.The interspike interval(ISI)is the time between successive action voltage spikes of neuron and it is a key indicator used to characterize the bursting.Recently,a three-dimensional memristive Hindmarsh-Rose(mHR)neuron model was constructed to generate hidden chaotic bursting.However,the properties of the discrete mHR neuron model have not been investigated,yet.In this article,we first construct a discrete mHR neuron model and then acquire different hidden chaotic bursting sequences under four typical sets of parameters.To make these sequences more suitable for the application,we further encode these hidden chaotic sequences using their ISIs and the performance comparative results show that the ISI-encoded chaotic sequences have much more complex chaos properties than the original sequences.In addition,we apply these ISI-encoded chaotic sequences to the application of image encryption.The image encryption scheme has a symmetric key structure and contains plain-text permutation and bidirectional diffusion processes.Experimental results and security analyses prove that it has excellent robustness against various possible attacks.展开更多
文摘In this work, we suggest a system for chaos-based encryption of electrocardiographic signals. It uses simple electronics organized around a colpitts chaotic oscillator. The system has been designed, implemented and tested. The encrypted signal has been decrypted and compared to the original ECG signal. Experimental results were analysed and proved encouraging.
文摘This paper analyzes the problems in image encryption and decryption based on chaos theory. This article introduces the application of the two-stage Logistic algorithm in image encryption and decryption, then by information entropy analysis it is concluded that the security of this algorithm is higher compared with the original image;And a new image encryption and decryption algorithm based on the combination of two-stage Logistic mapping and <i>M</i> sequence is proposed. This new algorithm is very sensitive to keys;the key space is large and its security is higher than two-stage Logistic mapping of image encryption and decryption technology.
基金supported by the National Natural Science Foundation of China(Grant Nos.51777016,51607013 and 62071142).
文摘Bursting is a diverse and common phenomenon in neuronal activation patterns and it indicates that fast action voltage spiking periods are followed by resting periods.The interspike interval(ISI)is the time between successive action voltage spikes of neuron and it is a key indicator used to characterize the bursting.Recently,a three-dimensional memristive Hindmarsh-Rose(mHR)neuron model was constructed to generate hidden chaotic bursting.However,the properties of the discrete mHR neuron model have not been investigated,yet.In this article,we first construct a discrete mHR neuron model and then acquire different hidden chaotic bursting sequences under four typical sets of parameters.To make these sequences more suitable for the application,we further encode these hidden chaotic sequences using their ISIs and the performance comparative results show that the ISI-encoded chaotic sequences have much more complex chaos properties than the original sequences.In addition,we apply these ISI-encoded chaotic sequences to the application of image encryption.The image encryption scheme has a symmetric key structure and contains plain-text permutation and bidirectional diffusion processes.Experimental results and security analyses prove that it has excellent robustness against various possible attacks.