Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast e...Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.展开更多
Chaos is a similar and random process which is very sensitive to initial value in deterministic system. It is a performance of nonlinear dynamical system with built-in randomness. Combined with the advantages and disa...Chaos is a similar and random process which is very sensitive to initial value in deterministic system. It is a performance of nonlinear dynamical system with built-in randomness. Combined with the advantages and disadvantages of the present chaos encryption model, the paper proposes a chaotic stream cipher model based on chaos theory, which not only overcomes finite precision effect, but also improves the randomness of chaotic system and output sequence. The Sequence cycle theory generated by the algorithm can reach more than 10600 at least, which completely satisfies the actual application requirements of stream cipher system.展开更多
In this paper, we present the results for the security and the possible attacks on a new symmetric key encryption algorithm based on the ergodicity property of a logistic map. After analysis, we use mathematical induc...In this paper, we present the results for the security and the possible attacks on a new symmetric key encryption algorithm based on the ergodicity property of a logistic map. After analysis, we use mathematical induction to prove that the algorithm can be attacked by a chosen plaintext attack successfully and give an example to show how to attack it. According to the cryptanalysis of the originM Mgorithm, we improve the originM Mgorithm, and make a brief cryptanalysis. Compared with the original algorithm, the improved algorithm is able to resist a chosen plaintext attack and retain a considerable number of advantages of the original algorithm such as eneryption speed, sensitive dependence on the key, strong anti-attack capability, and so on.展开更多
A class of chaotic map called piecewise-quadratic-equation map to design feedback stream cipher is proposed. Such map can generate chaotic signals that have uniform distribution function, δ-like autocorrelation funct...A class of chaotic map called piecewise-quadratic-equation map to design feedback stream cipher is proposed. Such map can generate chaotic signals that have uniform distribution function, δ-like autocorrelation function. Compared with the piecewise-linear map, this map provides enhanced security in that they can maintain the original perfect statistical properties, as well as overcome the defect of piecewise-linearity and expand the key space. This paper presents a scheme to improve the local complexity of the chaotic stream cipher based on the piecewise-quadratic-equationmap. Both the theoretic analysis and the results of simulation show that this scheme improves the microstructure of the phase-space graph on condition that the good properties of the original scheme are remained.展开更多
The chaotic frequency hopping (FH) communication systems have been presented so far. The chaotic sequences possesses good randomness and sensitive dependence on initial conditions, which is quite advantageous to run t...The chaotic frequency hopping (FH) communication systems have been presented so far. The chaotic sequences possesses good randomness and sensitive dependence on initial conditions, which is quite advantageous to run the FH codes in code-division multiple access (CDMA) systems. But the finite precision of computation and the fact of the low-dimensional chaos predicted easily cause difficulty in chaotic application. In this paper, some disadvantages associated with the conventional FH codes and the chaotic code scrambled by m-sequences are reviewed briefly. In order to overcome these drawbacks to some extents, a new higher performance FH code called cipher quasi-chaotic (CQC) code is proposed, which is generated by combining the clock-controlled stream cipher technique and chaotic dynamics. Performance analysis applying in FH communication systems of this kind of code is given. The privacy of the CQC sequence is also analyzed.展开更多
Data encryption is essential in securing exchanged data between connected parties.Encryption is the process of transforming readable text into scrambled,unreadable text using secure keys.Stream ciphers are one type of...Data encryption is essential in securing exchanged data between connected parties.Encryption is the process of transforming readable text into scrambled,unreadable text using secure keys.Stream ciphers are one type of an encryption algorithm that relies on only one key for decryption and as well as encryption.Many existing encryption algorithms are developed based on either a mathematical foundation or on other biological,social or physical behaviours.One technique is to utilise the behavioural aspects of game theory in a stream cipher.In this paper,we introduce an enhanced Deoxyribonucleic acid(DNA)-coded stream cipher based on an iterated n-player prisoner’s dilemma paradigm.Our main goal is to contribute to adding more layers of randomness to the behaviour of the keystream generation process;these layers are inspired by the behaviour of multiple players playing a prisoner’s dilemma game.We implement parallelism to compensate for the additional processing time that may result fromadding these extra layers of randomness.The results show that our enhanced design passes the statistical tests and achieves an encryption throughput of about 1,877 Mbit/s,which makes it a feasible secure stream cipher.展开更多
This paper presents a ZUC-256 stream cipher algorithm hardware system in order to prevent the advanced security threats for 5 G wireless network.The main innovation of the hardware system is that a six-stage pipeline ...This paper presents a ZUC-256 stream cipher algorithm hardware system in order to prevent the advanced security threats for 5 G wireless network.The main innovation of the hardware system is that a six-stage pipeline scheme comprised of initialization and work stage is employed to enhance the solving speed of the critical logical paths.Moreover,the pipeline scheme adopts a novel optimized hardware structure to fast complete the Mod(231-1)calculation.The function of the hardware system has been validated experimentally in detail.The hardware system shows great superiorities.Compared with the same type system in recent literatures,the logic delay reduces by 47%with an additional hardware resources of only 4 multiplexers,the throughput rate reaches 5.26 Gbps and yields at least 45%better performance,the throughput rate per unit area increases 14.8%.The hardware system provides a faster and safer encryption module for the 5G wireless network.展开更多
New block cipher algorithm in single byte for wireless sensor network with excellence of many cipher algorithms is studied. The child keys are generated through the developed discrete Logistic mapping, and the Feistel...New block cipher algorithm in single byte for wireless sensor network with excellence of many cipher algorithms is studied. The child keys are generated through the developed discrete Logistic mapping, and the Feistel encrypting function with discrete chaos operation is constructed. The single byte block is encrypted and decrypted through one turn permutation, being divided into two semi-byte, quadri- Feistel structural operation, and one turn permutation again. The amount of keys may be variable with the turns of Feistel structural operation. The random and security of the child key was proven, and the experiment for the block cipher in wireless sensor network was completed. The result indicates that the algorithm is more secure and the chaos block cipher in single byte is feasible for wireless sensor network.展开更多
基金supported in part by the National Natural Science Foundation of China Project under Grant 62075147the Suzhou Industry Technological Innovation Projects under Grant SYG202348.
文摘Orthogonal frequency division multiplexing passive optical network(OFDM-PON) has superior anti-dispersion property to operate in the C-band of fiber for increased optical power budget. However,the downlink broadcast exposes the physical layer vulnerable to the threat of illegal eavesdropping. Quantum noise stream cipher(QNSC) is a classic physical layer encryption method and well compatible with the OFDM-PON. Meanwhile, it is indispensable to exploit forward error correction(FEC) to control errors in data transmission. However, when QNSC and FEC are jointly coded, the redundant information becomes heavier and thus the code rate of the transmitted signal will be largely reduced. In this work, we propose a physical layer encryption scheme based on polar-code-assisted QNSC. In order to improve the code rate and security of the transmitted signal, we exploit chaotic sequences to yield the redundant bits and utilize the redundant information of the polar code to generate the higher-order encrypted signal in the QNSC scheme with the operation of the interleaver.We experimentally demonstrate the encrypted 16/64-QAM, 16/256-QAM, 16/1024-QAM, 16/4096-QAM QNSC signals transmitted over 30-km standard single mode fiber. For the transmitted 16/4096-QAM QNSC signal, compared with the conventional QNSC method, the proposed method increases the code rate from 0.1 to 0.32 with enhanced security.
文摘Chaos is a similar and random process which is very sensitive to initial value in deterministic system. It is a performance of nonlinear dynamical system with built-in randomness. Combined with the advantages and disadvantages of the present chaos encryption model, the paper proposes a chaotic stream cipher model based on chaos theory, which not only overcomes finite precision effect, but also improves the randomness of chaotic system and output sequence. The Sequence cycle theory generated by the algorithm can reach more than 10600 at least, which completely satisfies the actual application requirements of stream cipher system.
基金supported by the National Natural Science Foundation of China (Grant Nos. 61173183, 60573172, and 60973152)the Doctoral Program Foundation of Institution of Higher Education of China (Grant No. 20070141014)the Natural Science Foundation of Liaoning Province, China (Grant No. 20082165)
文摘In this paper, we present the results for the security and the possible attacks on a new symmetric key encryption algorithm based on the ergodicity property of a logistic map. After analysis, we use mathematical induction to prove that the algorithm can be attacked by a chosen plaintext attack successfully and give an example to show how to attack it. According to the cryptanalysis of the originM Mgorithm, we improve the originM Mgorithm, and make a brief cryptanalysis. Compared with the original algorithm, the improved algorithm is able to resist a chosen plaintext attack and retain a considerable number of advantages of the original algorithm such as eneryption speed, sensitive dependence on the key, strong anti-attack capability, and so on.
文摘A class of chaotic map called piecewise-quadratic-equation map to design feedback stream cipher is proposed. Such map can generate chaotic signals that have uniform distribution function, δ-like autocorrelation function. Compared with the piecewise-linear map, this map provides enhanced security in that they can maintain the original perfect statistical properties, as well as overcome the defect of piecewise-linearity and expand the key space. This paper presents a scheme to improve the local complexity of the chaotic stream cipher based on the piecewise-quadratic-equationmap. Both the theoretic analysis and the results of simulation show that this scheme improves the microstructure of the phase-space graph on condition that the good properties of the original scheme are remained.
基金This project was supported by the National High Technology Research and Development Program of China (2002AA144110)the National Natural Science Foundation of China (60272082) the Postdoctoral Science Foundation of China(2003033304).
文摘The chaotic frequency hopping (FH) communication systems have been presented so far. The chaotic sequences possesses good randomness and sensitive dependence on initial conditions, which is quite advantageous to run the FH codes in code-division multiple access (CDMA) systems. But the finite precision of computation and the fact of the low-dimensional chaos predicted easily cause difficulty in chaotic application. In this paper, some disadvantages associated with the conventional FH codes and the chaotic code scrambled by m-sequences are reviewed briefly. In order to overcome these drawbacks to some extents, a new higher performance FH code called cipher quasi-chaotic (CQC) code is proposed, which is generated by combining the clock-controlled stream cipher technique and chaotic dynamics. Performance analysis applying in FH communication systems of this kind of code is given. The privacy of the CQC sequence is also analyzed.
文摘Data encryption is essential in securing exchanged data between connected parties.Encryption is the process of transforming readable text into scrambled,unreadable text using secure keys.Stream ciphers are one type of an encryption algorithm that relies on only one key for decryption and as well as encryption.Many existing encryption algorithms are developed based on either a mathematical foundation or on other biological,social or physical behaviours.One technique is to utilise the behavioural aspects of game theory in a stream cipher.In this paper,we introduce an enhanced Deoxyribonucleic acid(DNA)-coded stream cipher based on an iterated n-player prisoner’s dilemma paradigm.Our main goal is to contribute to adding more layers of randomness to the behaviour of the keystream generation process;these layers are inspired by the behaviour of multiple players playing a prisoner’s dilemma game.We implement parallelism to compensate for the additional processing time that may result fromadding these extra layers of randomness.The results show that our enhanced design passes the statistical tests and achieves an encryption throughput of about 1,877 Mbit/s,which makes it a feasible secure stream cipher.
基金supported in part by the National R&D Program for Major Research Instruments of China(Grant No:62027814)the National Natural Science Foundation of China(Grant No:62104054)+2 种基金the Natural Science Foundation of Heilongjiang Province(Grant No:F2018010)the Postdoctoral Science Foundation of Heilongjiang Province,China(No:LBH-Z20133)the Fundamental Research Funds for The Central Universities,China(3072021CF0806)。
文摘This paper presents a ZUC-256 stream cipher algorithm hardware system in order to prevent the advanced security threats for 5 G wireless network.The main innovation of the hardware system is that a six-stage pipeline scheme comprised of initialization and work stage is employed to enhance the solving speed of the critical logical paths.Moreover,the pipeline scheme adopts a novel optimized hardware structure to fast complete the Mod(231-1)calculation.The function of the hardware system has been validated experimentally in detail.The hardware system shows great superiorities.Compared with the same type system in recent literatures,the logic delay reduces by 47%with an additional hardware resources of only 4 multiplexers,the throughput rate reaches 5.26 Gbps and yields at least 45%better performance,the throughput rate per unit area increases 14.8%.The hardware system provides a faster and safer encryption module for the 5G wireless network.
基金the National Basic Research Program(Grant No.G1999033105)the Fund of Chongqing Science and Technology Committee(Grant No.2005BB2198)+1 种基金the Fund of the Natural Science of Education Department of Anhui Province,China(Grant No.2005KJ092)the Fund of the Natural Science for the Young Teachers of Huainan Normal University in China(Grant No.2004LKQ01)
文摘New block cipher algorithm in single byte for wireless sensor network with excellence of many cipher algorithms is studied. The child keys are generated through the developed discrete Logistic mapping, and the Feistel encrypting function with discrete chaos operation is constructed. The single byte block is encrypted and decrypted through one turn permutation, being divided into two semi-byte, quadri- Feistel structural operation, and one turn permutation again. The amount of keys may be variable with the turns of Feistel structural operation. The random and security of the child key was proven, and the experiment for the block cipher in wireless sensor network was completed. The result indicates that the algorithm is more secure and the chaos block cipher in single byte is feasible for wireless sensor network.