In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochasti...In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control al- gorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method.展开更多
In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by app...In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by applying the undetermined coefficient method, which shows the complex dynamical properties of this system.展开更多
In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to ...In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to simplify the whole system. A simple linear controller is introduced to realize time-delay chaos synchronization and image encryption. The positions of the image pixels are firstly shuffled and then be hidden in the cartier image. The address codes of the chaotic sequences are adopted to avoid the disturbances induced by the initial value and computer accuracy error. Simulation results for color image are provided to illustrate the effectiveness of the proposed method. It can be seen clearly that the system can converge quickly and the image can be encrypted rapidly.展开更多
基金supported by the National Natural Science Foundation of China (Grant Nos 60534010,60774048,60728307,60804006 and 60521003)the National High Technology Research and Development Program of China (Grant No 2006AA04Z183)+2 种基金Liaoning Provincial Natural Science Foundation,China (Grant No 20062018)the State Key Development Program for Basic Research of China (Grant No 2009CB320601)111 Project (Grant No B08015)
文摘In this paper, the global impulsive exponential synchronization problem of a class of chaotic delayed neural networks (DNNs) with stochastic perturbation is studied. Based on the Lyapunov stability theory, stochastic analysis approach and an efficient impulsive delay differential inequality, some new exponential synchronization criteria expressed in the form of the linear matrix inequality (LMI) are derived. The designed impulsive controller not only can globally exponentially stabilize the error dynamics in mean square, but also can control the exponential synchronization rate. Furthermore, to estimate the stable region of the synchronization error dynamics, a novel optimization control al- gorithm is proposed, which can deal with the minimum problem with two nonlinear terms coexisting in LMIs effectively. Simulation results finally demonstrate the effectiveness of the proposed method.
基金Supported by National Natural Science Foundation of China under Grant No. 70271068
文摘In this paper, we discuss a type of chaotic system with delays. We study the equilibrium points and the existence of heteroclinic orbit of the system. Heteroclinic orbit existence theorem is proposed and proved by applying the undetermined coefficient method, which shows the complex dynamical properties of this system.
基金Acknowledgments Supported by the National Natural Science Foundation of China (Grant Nos. 51375293, 31570998), and the Science and Technology Commission of Shanghai Municipality (Grant No. 16511108600).
文摘In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to simplify the whole system. A simple linear controller is introduced to realize time-delay chaos synchronization and image encryption. The positions of the image pixels are firstly shuffled and then be hidden in the cartier image. The address codes of the chaotic sequences are adopted to avoid the disturbances induced by the initial value and computer accuracy error. Simulation results for color image are provided to illustrate the effectiveness of the proposed method. It can be seen clearly that the system can converge quickly and the image can be encrypted rapidly.