期刊文献+
共找到2篇文章
< 1 >
每页显示 20 50 100
Complete coverage path planning for an Arnold system based mobile robot to perform specific types of missions 被引量:4
1
作者 Cai-hong LI Chun FANG +2 位作者 Feng-ying WANG Bin XIA Yong SONG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2019年第11期1530-1542,共13页
We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic... We propose a contraction transformation algorithm to plan a complete coverage trajectory for a mobile robot to ac-complish specific types of missions based on the Arnold dynamical system. First, we construct a chaotic mobile robot by com-bining the variable z of the Arnold equation and the kinematic equation of the robot. Second, we construct the candidate sets including the initial points with a relatively high coverage rate of the constructed mobile robot. Then the trajectory is contracted to the current position of the robot based on the designed contraction transformation strategy, to form a continuous complete cov-erage trajectory to execute the specific types of missions. Compared with the traditional method, the designed algorithm requires no obstacle avoidance to the boundary of the given workplace, possesses a high coverage rate, and keeps the chaotic characteristics of the produced coverage trajectory relatively unchanged, which enables the robot to accomplish special missions with features of completeness, randomness, or unpredictability. 展开更多
关键词 chaotic mobile robot Arnold dynamical system Contraction transformation Complete coverage path planning Candidate set
原文传递
Parameter value selection strategy for complete coverage path planning based on the Lüsystem to perform specific types of missions
2
作者 Caihong LI Cong LIU +1 位作者 Yong SONG Zhenying LIANG 《Frontiers of Information Technology & Electronic Engineering》 SCIE EI CSCD 2023年第2期231-244,共14页
We propose a novel parameter value selection strategy for the Lüsystem to construct a chaotic robot to accomplish the complete coverage path planning(CCPP)task.The algorithm can meet the requirements of high rand... We propose a novel parameter value selection strategy for the Lüsystem to construct a chaotic robot to accomplish the complete coverage path planning(CCPP)task.The algorithm can meet the requirements of high randomness and coverage rate to perform specific types of missions.First,we roughly determine the value range of the parameter of the Lüsystem to meet the requirement of being a dissipative system.Second,we calculate the Lyapunov exponents to narrow the value range further.Next,we draw the phase planes of the system to approximately judge the topological distribution characteristics of its trajectories.Furthermore,we calculate the Pearson correlation coefficient of the variable for those good ones to judge its random characteristics.Finally,we construct a chaotic robot using variables with the determined parameter values and simulate and test the coverage rate to study the relationship between the coverage rate and the random characteristics of the variables.The above selection strategy gradually narrows the value range of the system parameter according to the randomness requirement of the coverage trajectory.Using the proposed strategy,proper variables can be chosen with a larger Lyapunov exponent to construct a chaotic robot with a higher coverage rate.Another chaotic system,the Lorenz system,is used to verify the feasibility and effectiveness of the designed strategy.The proposed strategy for enhancing the coverage rate of the mobile robot can improve the efficiency of accomplishing CCPP tasks under specific types of missions. 展开更多
关键词 chaotic mobile robot Lüsystem Complete coverage path planning(CCPP) Parameter value selection strategy Lyapunov exponent Pearson correlation coefficient
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部