A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to ...A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter.The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system.A circuit is designed and verified the feasibility of the system from the physical level.Finally,the system is applied to image encryption,and the security of the encryption system is analyzed from multiple aspects,providing a reference for the application of such memristive chaotic systems.展开更多
We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded...We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.展开更多
In this paper, we introduce a novel approach to achieve the data encryption. The fractional order Lorenz chaotic system is used to generate the chaotic sequence and the characteristics of the chaotic sequence are stud...In this paper, we introduce a novel approach to achieve the data encryption. The fractional order Lorenz chaotic system is used to generate the chaotic sequence and the characteristics of the chaotic sequence are studied. Some examples concerned with text and image encryption are also presented in the paper, which show exciting results by the approach we introduced.展开更多
This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a syn...This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.展开更多
We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incomm...We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.展开更多
This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to ac...This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.展开更多
A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fract...A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.展开更多
This paper studies the chaotic behaviours of the fractional-order unified chaotic system. Based on the approximation method in frequency domain, it proposes an electronic circuit model of tree shape to realize the fra...This paper studies the chaotic behaviours of the fractional-order unified chaotic system. Based on the approximation method in frequency domain, it proposes an electronic circuit model of tree shape to realize the fractional-order operator. According to the tree shape model, an electronic circuit is designed to realize the 2.7-order unified chaotic system. Numerical simulations and circuit experiments have verified the existence of chaos in the fraction-order unified system.展开更多
In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control...In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.展开更多
We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed co...We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.展开更多
This paper proposes an image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree.Firstly,other programming software is used to perform the middle order traversal,and the plai...This paper proposes an image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree.Firstly,other programming software is used to perform the middle order traversal,and the plaintext image is sorted according to the middle order traversal sequence on the permutation.Secondly,the chaotic sequence is generated using the coupled map lattice to set the chaotic interference value.Finally,the XOR operation between the adjacent pixel values of the replacement image is completed to generate the ciphertext matrix.The simulation and experimental results show that the proposed algorithm can resist typical attacks and has good robustness.展开更多
This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and extern...This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.展开更多
Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link....Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.展开更多
This paper presents a new synchronization method of the time-delay chaotic system and its application in medical image encryption. Compared with the existing techniques, the error system is greatly simplified because ...This paper presents a new synchronization method of the time-delay chaotic system and its application in medical image encryption. Compared with the existing techniques, the error system is greatly simplified because many coupled items can be considered zero items. An improved image encryption scheme based on a dynamic block is proposed. This scheme divides the image into dynamic blocks, and the number of blocks is determined by a previous block cipher. Numerical simulations are provided to illustrate the effectiveness of the proposed method.展开更多
Recently, two chaotic image encryption schemes have been proposed, in which shuffling the positions and changing the grey values of image pixels are combined. This paper provides the chosen plaintext attack to recover...Recently, two chaotic image encryption schemes have been proposed, in which shuffling the positions and changing the grey values of image pixels are combined. This paper provides the chosen plaintext attack to recover the corresponding plaintext of a given ciphertext. Furthermore, it points out that the two schemes are not sufficiently sensitive to small changes of the plaintext. Based on the given analysis, it proposes an improved algorithm which includes two rounds of substitution and one round of permutation to strengthen the overall performance.展开更多
With the rapid development of 5G technology,it has become fast and easy for people to transmit information on the Internet.Digital images can express information more intuitively,so transmitting information through im...With the rapid development of 5G technology,it has become fast and easy for people to transmit information on the Internet.Digital images can express information more intuitively,so transmitting information through images has excellent applications.This paper uses a new chaotic system called 1D-Sin-Logistic-Map(1D-SLM).1D-SLM has two control parameters,which can provide larger parameter space,and the parameter space in the chaotic state is continuous.Through Lyapunov exponent analysis(LE),bifurcation diagrams analysis,spectral entropy analysis(SE),and 0-1 test,it is verified that 1D-SLM has complex dynamic behavior and is very suitable for cryptography.Compared with other 1D chaotic systems,the 1D-SLM has a larger Lyapunov exponent(LE)and spectral entropy(SE).For color image encryption algorithms,only relying on chaotic mapping is not enough to ensure security.So combined with 1D-SLM,we design a color image encryption algorithm,which is implemented by plane expansion,which reduces the correlation between the three channels of color images.The experimental results show that the proposed cross-plane color image encryption algorithm is safe and resistant to common attack methods.展开更多
We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bif...We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.展开更多
A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system.In the process of generating a key stream,the time-varying delay and fractional derivative are embedded in the prop...A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system.In the process of generating a key stream,the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security.Such a scheme is described in detail with security analyses including correlation analysis,information entropy analysis,run statistic analysis,mean-variance gray value analysis,and key sensitivity analysis.Experimental results show that the newly proposed image encryption scheme possesses high security.展开更多
In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to ...In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to simplify the whole system. A simple linear controller is introduced to realize time-delay chaos synchronization and image encryption. The positions of the image pixels are firstly shuffled and then be hidden in the cartier image. The address codes of the chaotic sequences are adopted to avoid the disturbances induced by the initial value and computer accuracy error. Simulation results for color image are provided to illustrate the effectiveness of the proposed method. It can be seen clearly that the system can converge quickly and the image can be encrypted rapidly.展开更多
基金supported by National Natural Science Foundation of China(31301080)China Postdoctoral Science Foundation Project(2015M582122,2016T90644)+2 种基金National Key Technology Support Program of China(2015BAF13B00)Natural Science Foundation of Shandong Province(ZR2015FL001)the Open Project of State Key Laboratory of Crop Biology(2013KF10)
基金Project supported by the National Natural Science Foundation of China(Grant No.U1612442)Science and Technology Special Foundation Project of Guizhou Water Resources Department(Grant No.KT202236)。
文摘A new four-dimensional(4D)memristive chaotic system is obtained by introducing a memristor into the Rucklidge chaotic system,and a detailed dynamic analysis of the system is performed.The sensitivity of the system to parameters allows it obtains 16 different attractors by changing only one parameter.The various transient behaviors and excellent spectral entropy and C0 complexity values of the system can also reflect the high complexity of the system.A circuit is designed and verified the feasibility of the system from the physical level.Finally,the system is applied to image encryption,and the security of the encryption system is analyzed from multiple aspects,providing a reference for the application of such memristive chaotic systems.
基金Project supported by the National Natural Science Foundation of China (Grant Nos. 61004078 and 60971022)the Natural Science Foundation of Shandong Province, China (Grant Nos. ZR2009GQ009 and ZR2009GM005)+1 种基金the China Postdoctoral Science Foundation (Grant No. 20100481293)the Special Funds for Postdoctoral Innovative Projects of Shandong Province, China (Grant No. 201003037)
文摘We propose a new image encryption algorithm on the basis of the fractional-order hyperchaotic Lorenz system. While in the process of generating a key stream, the system parameters and the derivative order are embedded in the proposed algorithm to enhance the security. Such an algorithm is detailed in terms of security analyses, including correlation analysis, information entropy analysis, run statistic analysis, mean-variance gray value analysis, and key sensitivity analysis. The experimental results demonstrate that the proposed image encryption scheme has the advantages of large key space and high security for practical image encryption.
基金the General Science Research Project of Southwest University for Nationalities of China under Grant No. 234782.
文摘In this paper, we introduce a novel approach to achieve the data encryption. The fractional order Lorenz chaotic system is used to generate the chaotic sequence and the characteristics of the chaotic sequence are studied. Some examples concerned with text and image encryption are also presented in the paper, which show exciting results by the approach we introduced.
文摘This paper investigates the synchronization between integer-order and fractional-order chaotic systems. By intro- ducing fractional-order operators into the controllers, the addressed problem is transformed into a synchronization one among integer-order systems. A novel general method is presented in the paper with rigorous proof. Based on this method, effective controllers are designed for the synchronization between Lorenz systems with an integer order and a fractional order, and for the synchronization between an integer-order Chen system and a fractional-order Liu system. Numerical results, which agree well with the theoretical analyses, are also given to show the effectiveness of this method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238), the Science Found of Sichuan University of Science and Engineering (Grant Nos. 2012PY17 and 2014PY06), the Fund from Artificial Intelligence Key Laboratory of Sichuan Province (Grant No. 2014RYJ05), and the Opening Project of Sichuan Province University Key Laborstory of Bridge Non-destruction Detecting and Engineering Computing (Grant No. 2013QYJ01).
文摘We present a new fractional-order controller based on the Lyapunov stability theory and propose a control method which can control fractional chaotic and hyperchaotic systems whether systems are commensurate or incommensurate. The proposed control method is universal, simple, and theoretically rigorous. Numerical simulations are given for several fractional chaotic and hyperchaotic systems to verify the effectiveness and the universality of the proposed control method.
文摘This paper focuses on the synchronisation between fractional-order and integer-order chaotic systems. Based on Lyapunov stability theory and numerical differentiation, a nonlinear feedback controller is obtained to achieve the synchronisation between fractional-order and integer-order chaotic systems. Numerical simulation results are presented to illustrate the effectiveness of this method.
基金supported by the National Natural Science Foundation of China (Grant No. 51109180)the Personal Special Fund of Northwest Agriculture and Forestry University,China (Grant No. RCZX-2009-01)
文摘A no-chattering sliding mode control strategy for a class of fractional-order chaotic systems is proposed in this paper. First, the sliding mode control law is derived to stabilize the states of the commensurate fractional-order chaotic system and the non-commensurate fractional-order chaotic system, respectively. The designed control scheme guarantees the asymptotical stability of an uncertain fractional-order chaotic system. Simulation results are given for several fractional-order chaotic examples to illustrate the effectiveness of the proposed scheme.
文摘This paper studies the chaotic behaviours of the fractional-order unified chaotic system. Based on the approximation method in frequency domain, it proposes an electronic circuit model of tree shape to realize the fractional-order operator. According to the tree shape model, an electronic circuit is designed to realize the 2.7-order unified chaotic system. Numerical simulations and circuit experiments have verified the existence of chaos in the fraction-order unified system.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.11401243 and 61403157)the Fundamental Research Funds for the Central Universities of China(Grant No.GK201504002)the Natural Science Foundation for the Higher Education Institutions of Anhui Province of China(Grant No.KJ2015A256)
文摘In this paper the synchronization for two different fractional-order chaotic systems, capable of guaranteeing synchronization error with prescribed performance, is investigated by means of the fractional-order control method. By prescribed performance synchronization we mean that the synchronization error converges to zero asymptotically, with convergence rate being no less than a certain prescribed function. A fractional-order synchronization controller and an adaptive fractional-order synchronization controller, which can guarantee the prescribed performance of the synchronization error,are proposed for fractional-order chaotic systems with and without disturbances, respectively. Finally, our simulation studies verify and clarify the proposed method.
基金Project supported by the National Natural Science Foundation of China (Grant No. 11171238)the Ministry of Education Program for Changjiang Scholars and Innovative Research Team in University, China (Grant No. IRTO0742)
文摘We present a new fractional-order resistor-capacitor controller and a novel control method based on the fractional- order controller to control an arbitrary three-dimensional fractional chaotic system. The proposed control method is simple, robust, and theoretically rigorous, and its anti-noise performance is satisfactory. Numerical simulations are given for several fractional chaotic systems to verify the effectiveness and the universality of the proposed control method.
基金Project supported by the National Natural Science Foundation of China(Grant No.61672124)the Password Theory Project of the 13th Five-Year Plan National Cryptography Development Fund(Grant No.MMJJ20170203)+2 种基金Liaoning Province Science and Technology Innovation Leading Talents Program Project(Grant No.XLYC1802013)Key Research and Development Projects of Liaoning Province,China(Grant No.2019020105-JH2/103)Jinan City‘20 universities’Funding Projects Introducing Innovation Team Program(Grant No.2019GXRC031).
文摘This paper proposes an image encryption algorithm based on spatiotemporal chaos and middle order traversal of a binary tree.Firstly,other programming software is used to perform the middle order traversal,and the plaintext image is sorted according to the middle order traversal sequence on the permutation.Secondly,the chaotic sequence is generated using the coupled map lattice to set the chaotic interference value.Finally,the XOR operation between the adjacent pixel values of the replacement image is completed to generate the ciphertext matrix.The simulation and experimental results show that the proposed algorithm can resist typical attacks and has good robustness.
文摘This paper proposes a novel adaptive sliding mode control(SMC) method for synchronization of non-identical fractional-order(FO) chaotic and hyper-chaotic systems. Under the existence of system uncertainties and external disturbances,finite-time synchronization between two FO chaotic and hyperchaotic systems is achieved by introducing a novel adaptive sliding mode controller(ASMC). Here in this paper, a fractional sliding surface is proposed. A stability criterion for FO nonlinear dynamic systems is introduced. Sufficient conditions to guarantee stable synchronization are given in the sense of the Lyapunov stability theorem. To tackle the uncertainties and external disturbances, appropriate adaptation laws are introduced. Particle swarm optimization(PSO) is used for estimating the controller parameters. Finally, finite-time synchronization of the FO chaotic and hyper-chaotic systems is applied to secure communication.
文摘Multi-link networks are universal in the real world such as relationship networks,transportation networks,and communication networks.It is significant to investigate the synchronization of the network with multi-link.In this paper,considering the complex network with uncertain parameters,new adaptive controller and update laws are proposed to ensure that complex-valued multilink network realizes finite-time complex projective synchronization(FTCPS).In addition,based on fractional-order Lyapunov functional method and finite-time stability theory,the criteria of FTCPS are derived and synchronization time is given which is associated with fractional order and control parameters.Meanwhile,numerical example is given to verify the validity of proposed finite-time complex projection strategy and analyze the relationship between synchronization time and fractional order and control parameters.Finally,the network is applied to image encryption,and the security analysis is carried out to verify the correctness of this method.
基金This project supported by the National Natural Science Foundation of China (Grant Nos. 51375293, 31570998), and the Science and Technology Commission of Shanghai Municipality (Grant No. 16511108600).
文摘This paper presents a new synchronization method of the time-delay chaotic system and its application in medical image encryption. Compared with the existing techniques, the error system is greatly simplified because many coupled items can be considered zero items. An improved image encryption scheme based on a dynamic block is proposed. This scheme divides the image into dynamic blocks, and the number of blocks is determined by a previous block cipher. Numerical simulations are provided to illustrate the effectiveness of the proposed method.
基金Project supported by the Natural Science Foundation of Shandong Province, China (Grant No Y2007G43)
文摘Recently, two chaotic image encryption schemes have been proposed, in which shuffling the positions and changing the grey values of image pixels are combined. This paper provides the chosen plaintext attack to recover the corresponding plaintext of a given ciphertext. Furthermore, it points out that the two schemes are not sufficiently sensitive to small changes of the plaintext. Based on the given analysis, it proposes an improved algorithm which includes two rounds of substitution and one round of permutation to strengthen the overall performance.
基金This research was supported by the National Natural Science Foundation of China(61802212).
文摘With the rapid development of 5G technology,it has become fast and easy for people to transmit information on the Internet.Digital images can express information more intuitively,so transmitting information through images has excellent applications.This paper uses a new chaotic system called 1D-Sin-Logistic-Map(1D-SLM).1D-SLM has two control parameters,which can provide larger parameter space,and the parameter space in the chaotic state is continuous.Through Lyapunov exponent analysis(LE),bifurcation diagrams analysis,spectral entropy analysis(SE),and 0-1 test,it is verified that 1D-SLM has complex dynamic behavior and is very suitable for cryptography.Compared with other 1D chaotic systems,the 1D-SLM has a larger Lyapunov exponent(LE)and spectral entropy(SE).For color image encryption algorithms,only relying on chaotic mapping is not enough to ensure security.So combined with 1D-SLM,we design a color image encryption algorithm,which is implemented by plane expansion,which reduces the correlation between the three channels of color images.The experimental results show that the proposed cross-plane color image encryption algorithm is safe and resistant to common attack methods.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61072147 and 11271008)
文摘We propose a new fractional two-dimensional triangle function combination discrete chaotic map(2D-TFCDM)with the discrete fractional difference.Moreover,the chaos behaviors of the proposed map are observed and the bifurcation diagrams,the largest Lyapunov exponent plot,and the phase portraits are derived,respectively.Finally,with the secret keys generated by Menezes-Vanstone elliptic curve cryptosystem,we apply the discrete fractional map into color image encryption.After that,the image encryption algorithm is analyzed in four aspects and the result indicates that the proposed algorithm is more superior than the other algorithms.
基金Project supported by the National Natural Science Foundation of China(Grant Nos.61004078 and 60971022)the Natural Science Foundation of Shandong Province,China(Grant Nos.ZR2009GQ009 and ZR2009GM005)+1 种基金the China Postdoctoral Science Foundationthe Special Funds for Postdoctoral Innovative Projects of Shandong Province,China
文摘A new image encryption scheme is proposed based on a delayed fractional-order chaotic logistic system.In the process of generating a key stream,the time-varying delay and fractional derivative are embedded in the proposed scheme to improve the security.Such a scheme is described in detail with security analyses including correlation analysis,information entropy analysis,run statistic analysis,mean-variance gray value analysis,and key sensitivity analysis.Experimental results show that the newly proposed image encryption scheme possesses high security.
基金Acknowledgments Supported by the National Natural Science Foundation of China (Grant Nos. 51375293, 31570998), and the Science and Technology Commission of Shanghai Municipality (Grant No. 16511108600).
文摘In this paper, a new image encryption scheme is presented based on time-delay chaos synchronization. Compared with existing methods, a new method is pro- posed and a lot of coupled items can be taken as zero items to simplify the whole system. A simple linear controller is introduced to realize time-delay chaos synchronization and image encryption. The positions of the image pixels are firstly shuffled and then be hidden in the cartier image. The address codes of the chaotic sequences are adopted to avoid the disturbances induced by the initial value and computer accuracy error. Simulation results for color image are provided to illustrate the effectiveness of the proposed method. It can be seen clearly that the system can converge quickly and the image can be encrypted rapidly.