期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
改进两阶段分解的熵变混合短期风速预测研究 被引量:2
1
作者 杨奎 邱翔 +1 位作者 李家骅 刘宇陆 《计算机仿真》 北大核心 2022年第2期457-461,466,共6页
针对风速序列不平稳难以预测的问题,提出了一种混沌麻雀搜索算法(CSSA)优化最小二乘支持向量机(LSSVM)参数的短期风速预测混合模型。模型结合样本熵(SE)和具有自适应噪声改进的互补集成经验模态分解(ICEEMDAN)、变分模态分解(VMD)两阶... 针对风速序列不平稳难以预测的问题,提出了一种混沌麻雀搜索算法(CSSA)优化最小二乘支持向量机(LSSVM)参数的短期风速预测混合模型。模型结合样本熵(SE)和具有自适应噪声改进的互补集成经验模态分解(ICEEMDAN)、变分模态分解(VMD)两阶段分解的数据预处理方法。首先,利用ICEEMDAN分解原始风速序列,且依据SE评估子序列的复杂程度,重构熵值近似的序列,VMD二次分解熵值最大的序列。然后对所有子序列分别建立LSSVM预测模型,同时CSSA对该模型参数优化以提高预测效率。最后将预测的各子序列叠加得到最终风速预测值。通过与经典模态分解等混合模型比较表明,所提基于优化算法的模型预测精度和收敛速度有明显提高。 展开更多
关键词 具有自适应噪声改进的互补集成经验模态分解 混沌麻雀搜索算法 变分模态分解 样本熵 最小二乘支持向量机 短期风速预测
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部