期刊文献+
共找到1篇文章
< 1 >
每页显示 20 50 100
Improvement of Operation Characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel
1
作者 Zhao-Zhao Hou Gui-Lei Wang +2 位作者 Jia-Xin Yao Qing-Zhu Zhang Hua-Xiang Yin 《Chinese Physics Letters》 SCIE CAS CSCD 2018年第5期110-114,共5页
We propose and investigate a novel metal/SiO_2/Si_3N_4/SiO_2/SiGe charge trapping flash memory structure(named as MONOS), utilizing Si Ge as the buried channel. The fabricated memory device demonstrates excellent pr... We propose and investigate a novel metal/SiO_2/Si_3N_4/SiO_2/SiGe charge trapping flash memory structure(named as MONOS), utilizing Si Ge as the buried channel. The fabricated memory device demonstrates excellent programerasable characteristics attributed to the fact that more carriers are generated by the smaller bandgap of Si Ge during program/erase operations. A flat-band voltage shift 2.8 V can be obtained by programming at +11 V for 100 us. Meanwhile, the memory device exhibits a large memory window of ~7.17 V under ±12 V sweeping voltage, and a negligible charge loss of 18% after 104 s' retention. In addition, the leakage current density is lower than 2.52 × 10^(-7) A·cm^(-2) below a gate breakdown voltage of 12.5 V. Investigation of leakage current-voltage indicates that the Schottky emission is the predominant conduction mechanisms for leakage current. These desirable characteristics are ascribed to the higher trap density of the Si_3N_4 charge trapping layer and the better quality of the interface between the SiO_2 tunneling layer and the Si Ge buried channel. Therefore, the application of the Si Ge buried channel is very promising to construct 3 D charge trapping NAND flash devices with improved operation characteristics. 展开更多
关键词 FB Improvement of operation characteristics for MONOS Charge Trapping Flash Memory with SiGe Buried Channel
下载PDF
上一页 1 下一页 到第
使用帮助 返回顶部