As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is impor...As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%.展开更多
The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristi...The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.展开更多
Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchang...Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.展开更多
With the increasingly prominent problem of food safety,the quality traceability of characteristic agricultural products has become a pressing issue.This study focuses on the application of blockchain technology in the...With the increasingly prominent problem of food safety,the quality traceability of characteristic agricultural products has become a pressing issue.This study focuses on the application of blockchain technology in the traceability of characteristic agricultural products,aiming to explore its potential and practical value in improving the efficiency and transparency of the traceability system of agricultural products.Through the combination of case analysis and model construction,a blockchain-based traceability system for characteristic agricultural products was established.The results showed that the traceability system could effectively record the whole process information of agricultural products from production and processing to sales,and greatly improve the immutability and traceability of data.Lastly,this paper also points out that the use of blockchain technology can improve the market trust in characteristic agricultural products,provide consumers with authentic and reliable product information,and provide new technical means for the quality management of agricultural products.展开更多
The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristic...The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.展开更多
This experiment was conducted to study the effect of molasses on the fermentation characteristics of mixed silage ensiled rice straw and vegetable by-products with alfalfa.Mixture(202 g kg^-1 dry matter(DM))consis...This experiment was conducted to study the effect of molasses on the fermentation characteristics of mixed silage ensiled rice straw and vegetable by-products with alfalfa.Mixture(202 g kg^-1 dry matter(DM))consisting of rice straw,broccoli residue and alfalfa at the ratio of 5:4:1 was ensiled with three experimental treatments:(1)no additives(control);(2)molasses at 2.5%(M1);(3)molasses at 5%(M2)on a fresh matter basis of mixture,respectively.All treatments were packed into laboratory-scale silos,and three silos per treatment were sampled on days 1,3,5,14 and 30.The result showed that the p H value of all mixed silages decreased gradually with the time of ensiling except for the control silage,in which a significant increase(P〈0.05)on day 30 occurred.The lactic acid content increased gradually with the time of ensiling and reached the highest value on day 14,and a marked decrease(P〈0.05)was found in the control silage on day 30.The changes of acetic acid content showed similar pattern with lactic acid content.A trace amount of propionic and butyric acid contents were found in the three mixed silages during the fermentation period.Comparing to the control,M1 and M2 treatments improved the fermentation quality of mixed silages as indicated by higher(P〈0.05)lactic acid contents and lower(P〈0.05)p H and ammonia-N contents.The Flieg points also showed that M1 and M2 silages were well preserved,whereas the control silage had a bad quality.Overall,the findings of this study suggested that adding molasses could improve fermentation quality of mixed silage,and M1 was more suitable for practical application.展开更多
In order to investigate the current status of heavy metals pollution and food safety of aquatic products from Lake Taihu,atomic absorption spectrophotometry( AAS) was used to determine the contents of Pb,Cd,Cu,and Zn ...In order to investigate the current status of heavy metals pollution and food safety of aquatic products from Lake Taihu,atomic absorption spectrophotometry( AAS) was used to determine the contents of Pb,Cd,Cu,and Zn in the head,muscle and viscera of farmed and wild aquatic products. The results showed that the distribution patterns of heavy metals in different parts of aquatic products were quite different. Heavy metals were mainly distributed in the head and viscera of all investigated aquatic products except wild Carassius auratus. The contents of heavy metals in each part of aquatic products generally decreased in the following order: Zn > Cu > Pb > Cd. The levels of heavy metals pollution in the muscle tissue of farmed and wild aquatic products were different,with higher levels being found in the muscle tissue of wild aquatic products. Furthermore,the content of each heavy metal in muscle tissue was also different among different kinds of aquatic products,with both farmed and wild Metapenaeus ensis having the strongest Cu accumulation capacity while wild C. auratus having the strongest Zn accumulation capacity. The heavy metals pollution in the muscle tissue of aquatic products from Lake Taihu was generally at unpolluted to minor pollution level,and only a few of them were seriously polluted with heavy metals. The main pollution factors were Pb and Zn.展开更多
This paper presents the major analyses carried out on shape and form’s characteristic database from Japanese and Vietnamese traditional daily products(TDPs).The aim of the research is to recognize the vital specifica...This paper presents the major analyses carried out on shape and form’s characteristic database from Japanese and Vietnamese traditional daily products(TDPs).The aim of the research is to recognize the vital specifications representing for a national style by comparing two different countries together.By using Quantification Theory Type III and Cluster analysis,firstly,the analyses were undergone separately for Japanese and then Vietnamese product data in succession so that a view of general direction for each country was caught.The result showing a difference in scale of“Complexity”and“Specification”axis between Japan and Vietnam leads to performance of the analysis done on combine database of the two countries to get a clearer view of correlation between them.However,the biggest difference between the two countries lies in“Form”(Geometric—Organic)axis.Continuously,for studying more deeply into outline of product shape,the main ratios that affect the appearance or gorgeousness of product’s outline were taken into account and analyzed.By comparing this result to the previous ones,finally a wider and more detail perspective of Japan and Vietnam shape’s specification in a mutual relationship was discovered.展开更多
Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(...Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(TBB),cloud top temperature(CTT),cloud top height(CTH)and cloud top pressure(CTP)was quantitatively analyzed.The following conclusions were obtained:(1)at lightning location,90.5%of TBB values were less than 214.1 K;88.5%of CTT values were less than 207.7 K;88.5%of CTP values were less than 137.7 hPa,and 88.5%of CTH values were greater than 14872 m.At location without lightning,92.5%of TBB values were greater than 214.1 K;90.4%of CTT values were greater than 207.7 K;89%of CTP values were greater than 137.7 hPa,and 92%of CTH values were less than 14872 m.(2)Lightning activity was concentrated in the cloud area with TBB between 190-210 K,CTT between 185-210 K,CTP between 50-150 hPa and CTH between 12-18 km.Lightning intensity was roughly positively correlated with TBB,CTT and CTP,and negatively correlated with CTH.With the increase of CTH,lightning intensity decreased.(3)TBB,CTT,CTP and CTH can well indicate the location and activity frequency of lightning in thunderstorm weather.展开更多
China's price fluctuations increasingly exhibit significant structural characteristics,and since 2003,there have been several rounds of significant structural price rise.The degree of structural rise in the prices...China's price fluctuations increasingly exhibit significant structural characteristics,and since 2003,there have been several rounds of significant structural price rise.The degree of structural rise in the prices of industrial and agricultural products in China is not only higher than in the general developed countries and developing countries,but also more prominent than in other transition economies.And the structural rise in the prices of Chinese industrial and agricultural products exhibits significant economic zone differences:the structural fluctuations are the greatest in the central and western regions,significantly higher than in the eastern regions as well as the national average.From the perspective of causes of structural rise in the prices of Chinese industrial and agricultural products,the government must aim to coordinate the industrial and agricultural investments and bridge the gap in the industrial and agricultural technologies and supply capacity.展开更多
To clarify the effects of mechanical sowing and transplanting on dry mat- ter production of middle-season hybrid rice, a two-factor split plot design was used to study the effects of different sowing and transplanting...To clarify the effects of mechanical sowing and transplanting on dry mat- ter production of middle-season hybrid rice, a two-factor split plot design was used to study the effects of different sowing and transplanting methods and their interac- tion with the seedling number per hill or seeding time on dry matter accumulation, distribution and transformation of F You 498, a middle-season hybrid rice variety, under field conditions in 2012 and 2013. The results showed that there was a marked effect of the sowing and transplanting methods and their interaction with the seedling number per hill or seeding time on dry matter accumulation, distribution and transformation. The total population dry matter accumulation of the treatments with mechanical direct seeding (MDS) and machine-based transplanting (MT) was lower than that of the treatment with traditional manual transplanting (TMT). How- ever, MDS had higher dry matter accumulation and accumulating rate in the joint- ing-earing stage,and maintained higher stem-sheath exportation, export rate and transformation than MT and TMT; MT had higher dry matter accumulation and ac- cumulating rate in the heading-maturity period than MDS and TMT. Moreover, the treatments with low seedling number per hill or early seeding enhanced the assimi- lation of dry matter after heading,the ratio of dry matter accumulation after earing to biomass yield and the contribution rate of dry matter accumulation after earing, and a reasonable early sowing was favorable to increase the harvest index of middle- season hybrid rice under mechanical sowing and transplanting conditions.展开更多
Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recogniz...Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.展开更多
Strain of Flavobacterium sp.(S-9801),was screened from 207 strains of marine bacteria isolated from the Bohai Sea continental shelf and the Zhujiang Estuary,for its red pigment production.The biological characteristic...Strain of Flavobacterium sp.(S-9801),was screened from 207 strains of marine bacteria isolated from the Bohai Sea continental shelf and the Zhujiang Estuary,for its red pigment production.The biological characteristics of strain S-9801 and culture conditions of pigment production have been checked out in this study. The color of the bacterial colony on 2216E medium was from coccineus to rose bengal. Optimum culture conditions were sodium chloride concentration(g/dm3),10~30;pH,3~8;temperature,25~28℃;tryptone and yeast extract as nitrogen sources and glucose as carbon source. Under optimum conditions,pigment accumulation started after 12 h,reaching a maximum rate of synthesis at 36 h.展开更多
The spatiotemporal characteristics of hydrothermal resources in southern rice production area of China have changed under the background of climate change,and this change would affect the effectiveness of hydrothermal...The spatiotemporal characteristics of hydrothermal resources in southern rice production area of China have changed under the background of climate change,and this change would affect the effectiveness of hydrothermal resources during local rice growing period.According to the cropping system subdivision in southern rice production area of China during 1980s,this study used climate data from 254 meteorological stations and phonological data from 168 agricultural observation stations in the south of China,and adopted 6 international evaluation indices about the effectiveness of hydrothermal resources to analyze the temporal and spatial characteristics of hydrothermal resources during the growing period of single cropping rice system and double cropping rice system for 16 planting zones in the whole study area.The results showed that:in southern rice production area of China,the effectiveness of thermal resources of single cropping rice area(SCRA) was less than that of double cropping rice area(DCRA),whereas the effectiveness of thermal resources of both SARA and DCRA showed a decreasing trend.The index value of effective precipitation satisfaction of SCRA was higher than that of DCRA,nevertheless the index value of effective precipitation satisfaction of both SCRA and DCRA showed a decreasing trend.There was a significant linear relationship between effective thermal resource and water demand,likely water demand increased by 18 mm with every 100°C d increase of effective heat.Effective precipitation satisfaction index(EPSI) showed a negative correlation with effective heat,yet showed a positive correlation with effective precipitation.EPSI reduced by 1% when effective heat resource increased by 125°C d.This study could provide insights for policy makers,land managers or farmers to improve water and heat resource uses and rationally arrange rice production activities under global climate change condition.展开更多
The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D...The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery.展开更多
To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen produc...To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture·h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H 2/g COD and 49.9 ml H 2/g COD, respectively.展开更多
Alpine meadow plants,adapted to humid and cold environments,are highly sensitive to environmental factors such as drought and heat.However,the physiological responses of individual alpine meadow species to drought and...Alpine meadow plants,adapted to humid and cold environments,are highly sensitive to environmental factors such as drought and heat.However,the physiological responses of individual alpine meadow species to drought and heat stress remain unclear.In this study,four representative species of typical functional groups in an alpine meadow of the Qinghai-Tibet Plateau were selected as experimental materials.Heat(H1,H2),drought(D1,D2),and combined stress(D1H1,D2H2)treatments were implemented to reveal the biomass and physiological characteristics’response to a constant drought and heat environment.Our results showed that the leaf water content(LWC)of Kobresia humilis and Poa annua increased significantly under heat stress and the compound stress(P<0.05).The effect of a single factor on LWC was greater than that of multiple factors.The aboveground biomass(AGB)of Oxytropis ochrocephala and Saussurea pulchra decreased significantly under compound stress(P<0.05).The response patterns of the net photosynthetic rate(Pn)and transpiration rate(Tr)of K.humilis and P.annua under various stress treatments were similar;as were those of O.ochrocephala and S.pulchra.The stomatal conductance(Gs)variation in K.humilis,P.annua,O.ochrocephala,and S.pulchra were the same under three kinds of stress treatments.The photosynthetic characteristics were more sensitive to the effects of composite than those of single factors.The drought×heat×species treatment had a significant influence on various indexes except on height(Ht)and the belowground biomass(BGB)(P<0.01).Within a certain range,daytime temperature(DT)promoted the Ht and increased the LWC of the plants,while it inhibited their AGB and intercellular CO2 concentration(Ci).The Pn,Tr,and Gs were more sensitive to soil moisture than to DT.The results help improve understanding of the physiological response regularity of representative alpine meadow plant species to continuous drought and high temperature conditions at the species level,and provided experimental data and theoretical basis to identify the decisive factors of stress response.展开更多
Formation subsidence is inevitable during marine hydrate decomposition,and the consequent casing deformation seriously threatens the security of sustainable hydrate production.Owing to insufficient observed data of fo...Formation subsidence is inevitable during marine hydrate decomposition,and the consequent casing deformation seriously threatens the security of sustainable hydrate production.Owing to insufficient observed data of formation subsidence in field,displacement boundary condition of casing is undetermined.Thus the conventional static methods are inapplicable for the calculation of casing deformation in hydrate production well.The present work aims at proposing an approach to investigate dynamic deformation of the casing during hydrate production.In the proposed methodology,based on the movement theory of hydrate decomposition front,hydrate decomposition process can be simulated,in which hydrate reservoir strength formation subsidence showed time-dependent characteristics.By considering the actual interactions among casing,cement and formation,three models of hydrate production well are developed to reveal the static and dynamic deformation mechanisms of the casing.The application of the proposed methodology is demonstrated through a case study.Results show that buckling deformation and bending deformation of casing reduce the passing ability of downhole tools in deformed casing by 4.2%and 7.5%,respectively.With the progress of hydrate production,buckling deformation will increase obviously,while a little increase of bending deformation will occur,as the formation slippage induced by formation inclination is much larger than that caused by hydrate decomposition.The proposed approach can provide theoretical reference for improving casing integrity of marine hydrate production.展开更多
基金supported by the National Natural Science Foundation of China(Nos.42276224 and 42206230)the Jilin Scientific and Technological Development Program(No.20190303083SF)+1 种基金the International Cooperation Key Laboratory of Underground Energy Development and Geological Restoration(No.YDZJ202102CXJD014)the Graduate Innovation Fund of Jilin University(No.2023CX100).
文摘As an important source of low-carbon,clean fossil energy,natural gas hydrate plays an important role in improving the global energy consumption structure.Developing the hydrate industry in the South China Sea is important to achieving‘carbon peak and carbon neutrality’goals as soon as possible.Deep-water areas subjected to the action of long-term stress and tectonic movement have developed complex and volatile terrains,and as such,the morphologies of hydrate-bearing sediments(HBSs)fluctuate correspondingly.The key to numerically simulating HBS morphologies is the establishment of the conceptual model,which represents the objective and real description of the actual geological body.However,current numerical simulation models have characterized HBSs into horizontal strata without considering the fluctuation characteristics.Simply representing the HBS as a horizontal element reduces simulation accuracy.Therefore,the commonly used horizontal HBS model and a model considering the HBS’s fluctuation characteristics with the data of the SH2 site in the Shenhu Sea area were first constructed in this paper.Then,their production behaviors were compared,and the huge impact of the fluctuation characteristics on HBS production was determined.On this basis,the key parameters affecting the depressurization production of the fluctuating HBSs were studied and optimized.The research results show that the fluctuation characteristics have an obvious influence on the hydrate production of HBSs by affecting their temperatures and pressure distributions,as well as the transmission of the pressure drop and methane gas discharge.Furthermore,the results show that the gas productivity of fluctuating HBSs was about 5%less than that of horizontal HBSs.By optimizing the depressurization amplitude,well length,and layout location of vertical wells,the productivity of fluctuating HBSs increased by about 56.6%.
基金financially supported by the China Postdoctoral Science Foundation(Grant No.2023M732979 and No.2022TQ0127)the Cooperative Research Project of the Ministry of Education's "Chunhui Program"(Grant No.HZKY20220117)+1 种基金the Natural Science Foundation of Jiangsu Province(Grant No.BK20220587)the National Natural Science Foundation of China(Grant No.52309112)。
文摘The electric submersible pump(ESP) is a crucial apparatus utilized for lifting in the oil extraction process.Its lifting capacity is enhanced by the multi-stage tandem structure, but variations in energy characteristics and internal flow across stages are also introduced. In this study, the inter-stage variability of energy characteristics in ESP hydraulic systems is investigated through entropy production(EP) analysis,which incorporates numerical simulations and experimental validation. The EP theory facilitates the quantification of energy loss in each computational subdomain at all ESP stages, establishing a correlation between microscopic flow structure and energy dissipation within the system. Furthermore, the underlying causes of inter-stage variability in ESP hydraulic systems are examined, and the advantages and disadvantages of applying the EP theory in this context are evaluated. Consistent energy characteristics within the ESP, aligned with the distribution of internal flow structure, are provided by the EP theory, as demonstrated by our results. The EP theory also enables the quantitative analysis of internal flow losses and complements existing performance analysis methods to map the internal flow structure to hydraulic losses. Nonetheless, an inconsistency between the energy characterization based on EP theory and the traditional efficiency index when reflecting inter-stage differences is identified. This inconsistency arises from the exclusive focus of the EP theory on flow losses within the flow field, disregarding the quantification of external energy input to the flow field. This study provides a reference for the optimization of EP theory in rotating machinery while deeply investigating the energy dissipation characteristics of multistage hydraulic system, which has certain theoretical and practical significance.
基金National Natural Science Foundation of China via grant number 52174035,52304048China Postdoctoral Science Foundation(2022M722637)Research and Innovation Fund for Graduate Students of Southwest Petroleum University(2022KYCX026).
文摘Recent studies have indicated that the injection of carbon dioxide(CO_(2))can lead to increased oil recovery in fractured shale reservoirs following natural depletion.Despite advancements in understanding mass exchange processes in subsurface formations,there remains a knowledge gap concerning the disparities in these processes between the matrix and fractures at the pore scale in formations with varying permeability.This study aims to experimentally investigate the CO_(2) diffusion behaviors and in situ oil recovery through a CO_(2) huff‘n’puff process in the Jimsar shale oil reservoir.To achieve this,we designed three matrix-fracture models with different permeabilities(0.074 mD,0.170 mD,and 0.466 mD)and experimented at 30 MPa and 91℃.The oil concentration in both the matrix and fracture was monitored using a low-field nuclear magnetic resonance(LF-NMR)technique to quantify in situ oil recovery and elucidate mass-exchange behaviors.The results showed that after three cycles of CO_(2) huff‘n’puff,the total recovery degree increased from 30.28%to 34.95%as the matrix permeability of the core samples increased from 0.074 to 0.466 mD,indicating a positive correlation between CO_(2) extraction efficiency and matrix permeability.Under similar fracture conditions,the increase in matrix permeability further promoted CO_(2) extraction efficiency during CO_(2) huff‘n’puff.Specifically,the increase in matrix permeability of the core had the greatest effect on the extraction of the first-cycle injection in large pores,which increased from 16.42%to 36.64%.The findings from our research provide valuable insights into the CO_(2) huff‘n’puff effects in different pore sizes following fracturing under varying permeability conditions,shedding light on the mechanisms of CO_(2)-enhanced oil recovery in fractured shale oil reservoirs.
文摘With the increasingly prominent problem of food safety,the quality traceability of characteristic agricultural products has become a pressing issue.This study focuses on the application of blockchain technology in the traceability of characteristic agricultural products,aiming to explore its potential and practical value in improving the efficiency and transparency of the traceability system of agricultural products.Through the combination of case analysis and model construction,a blockchain-based traceability system for characteristic agricultural products was established.The results showed that the traceability system could effectively record the whole process information of agricultural products from production and processing to sales,and greatly improve the immutability and traceability of data.Lastly,this paper also points out that the use of blockchain technology can improve the market trust in characteristic agricultural products,provide consumers with authentic and reliable product information,and provide new technical means for the quality management of agricultural products.
基金The authors greatly appreciate the financial support of the National Natural Science Foundation of China(Grant No.52104027)the Project supported by the Joint Funds of the National Natural Science Foundation of China(Grant No.U21B2070)the Shandong Provincial Natural Science Foundation(Grant No.ZR2021ME072).
文摘The pilot test of infilling polymer-surfactant-preformed particle gel(PPG)flooding has been successfully implemented after polymer flooding in Ng3 block of Gudao Oilfield in China.However,the production characteristics and displacement mechanisms are still unclear,which restricts its further popularization and application.Aiming at this problem,this paper firstly analyzes the production performance of the pilot test and proposed four response types according to the change of water cut curves,including W-type,U-type,V-type response,and no response.Furthermore,the underlying reasons of these four types are analyzed from the aspects of seepage resistance and sweep efficiency.The overall sweep efficiency of gradual-rising W-type,gradual-decreasing W-type,and early V-type response increases from 0.81 to 0.93,0.55 to 0.89,and 0.94 to 1,respectively.And the sum of seepage resistance along the connection line between production well and injection well for U-type and delayed V-type response increases from 0.0994 to 0.2425,and 0.0677 to 0.1654,respectively.Then,the remaining oil distribution after polymer flooding is summarized into four types on the basis of production and geological characteristics,namely disconnected remaining oil,streamline unswept remaining oil,rhythm remaining oil,and interlayer-controlled remaining oil.Furthermore,the main displacement mechanisms for each type are clarified based on the dimensionless seepage resistance and water absorption profile.Generally,improving connectivity by well pattern infilling is the most important for producing disconnected remaining oil.The synergistic effect of well pattern infilling and polymer-surfactant-PPG flooding increases the dimensionless seepage resistance of water channeling regions and forces the subsequent injected water to turn to regions with streamline unswept remaining oil.The improvement of the water absorption profile by polymer-surfactant-PPG flooding and separated layer water injection contributes to displacing rhythm remaining oil and interlayer-controlled remaining oil.Finally,the paper analyzes the relationships between the remaining oil distribution after polymer flooding and production characteristics of infilling polymer-surfactant-PPG flooding.The study helps to deepen the understanding of infilling polymer-surfactant-PPG flooding and has reference significance for more commercial implementations in the future.
基金supported by the project of Jiangsu Independent Innovation, China (CX(15)1003-3)the Key Technologies R&D Program of China during the 13th Five Year Plan period (2016YFC0502005)the special project of grass of Tibetan Autonomous Region for the “13th FiveYear” Plan, China
文摘This experiment was conducted to study the effect of molasses on the fermentation characteristics of mixed silage ensiled rice straw and vegetable by-products with alfalfa.Mixture(202 g kg^-1 dry matter(DM))consisting of rice straw,broccoli residue and alfalfa at the ratio of 5:4:1 was ensiled with three experimental treatments:(1)no additives(control);(2)molasses at 2.5%(M1);(3)molasses at 5%(M2)on a fresh matter basis of mixture,respectively.All treatments were packed into laboratory-scale silos,and three silos per treatment were sampled on days 1,3,5,14 and 30.The result showed that the p H value of all mixed silages decreased gradually with the time of ensiling except for the control silage,in which a significant increase(P〈0.05)on day 30 occurred.The lactic acid content increased gradually with the time of ensiling and reached the highest value on day 14,and a marked decrease(P〈0.05)was found in the control silage on day 30.The changes of acetic acid content showed similar pattern with lactic acid content.A trace amount of propionic and butyric acid contents were found in the three mixed silages during the fermentation period.Comparing to the control,M1 and M2 treatments improved the fermentation quality of mixed silages as indicated by higher(P〈0.05)lactic acid contents and lower(P〈0.05)p H and ammonia-N contents.The Flieg points also showed that M1 and M2 silages were well preserved,whereas the control silage had a bad quality.Overall,the findings of this study suggested that adding molasses could improve fermentation quality of mixed silage,and M1 was more suitable for practical application.
文摘In order to investigate the current status of heavy metals pollution and food safety of aquatic products from Lake Taihu,atomic absorption spectrophotometry( AAS) was used to determine the contents of Pb,Cd,Cu,and Zn in the head,muscle and viscera of farmed and wild aquatic products. The results showed that the distribution patterns of heavy metals in different parts of aquatic products were quite different. Heavy metals were mainly distributed in the head and viscera of all investigated aquatic products except wild Carassius auratus. The contents of heavy metals in each part of aquatic products generally decreased in the following order: Zn > Cu > Pb > Cd. The levels of heavy metals pollution in the muscle tissue of farmed and wild aquatic products were different,with higher levels being found in the muscle tissue of wild aquatic products. Furthermore,the content of each heavy metal in muscle tissue was also different among different kinds of aquatic products,with both farmed and wild Metapenaeus ensis having the strongest Cu accumulation capacity while wild C. auratus having the strongest Zn accumulation capacity. The heavy metals pollution in the muscle tissue of aquatic products from Lake Taihu was generally at unpolluted to minor pollution level,and only a few of them were seriously polluted with heavy metals. The main pollution factors were Pb and Zn.
文摘This paper presents the major analyses carried out on shape and form’s characteristic database from Japanese and Vietnamese traditional daily products(TDPs).The aim of the research is to recognize the vital specifications representing for a national style by comparing two different countries together.By using Quantification Theory Type III and Cluster analysis,firstly,the analyses were undergone separately for Japanese and then Vietnamese product data in succession so that a view of general direction for each country was caught.The result showing a difference in scale of“Complexity”and“Specification”axis between Japan and Vietnam leads to performance of the analysis done on combine database of the two countries to get a clearer view of correlation between them.However,the biggest difference between the two countries lies in“Form”(Geometric—Organic)axis.Continuously,for studying more deeply into outline of product shape,the main ratios that affect the appearance or gorgeousness of product’s outline were taken into account and analyzed.By comparing this result to the previous ones,finally a wider and more detail perspective of Japan and Vietnam shape’s specification in a mutual relationship was discovered.
基金Supported by Guizhou Provincial Science and Technology Fund Project(QIANKEHEJICHU-ZK[2022]GENERAL245)。
文摘Based on the lightning monitoring and FY4A satellite data in 12 periods during a thunderstorm,the relationship between lightning activity and four satellite digital products:blackbody radiation brightness temperature(TBB),cloud top temperature(CTT),cloud top height(CTH)and cloud top pressure(CTP)was quantitatively analyzed.The following conclusions were obtained:(1)at lightning location,90.5%of TBB values were less than 214.1 K;88.5%of CTT values were less than 207.7 K;88.5%of CTP values were less than 137.7 hPa,and 88.5%of CTH values were greater than 14872 m.At location without lightning,92.5%of TBB values were greater than 214.1 K;90.4%of CTT values were greater than 207.7 K;89%of CTP values were greater than 137.7 hPa,and 92%of CTH values were less than 14872 m.(2)Lightning activity was concentrated in the cloud area with TBB between 190-210 K,CTT between 185-210 K,CTP between 50-150 hPa and CTH between 12-18 km.Lightning intensity was roughly positively correlated with TBB,CTT and CTP,and negatively correlated with CTH.With the increase of CTH,lightning intensity decreased.(3)TBB,CTT,CTP and CTH can well indicate the location and activity frequency of lightning in thunderstorm weather.
文摘China's price fluctuations increasingly exhibit significant structural characteristics,and since 2003,there have been several rounds of significant structural price rise.The degree of structural rise in the prices of industrial and agricultural products in China is not only higher than in the general developed countries and developing countries,but also more prominent than in other transition economies.And the structural rise in the prices of Chinese industrial and agricultural products exhibits significant economic zone differences:the structural fluctuations are the greatest in the central and western regions,significantly higher than in the eastern regions as well as the national average.From the perspective of causes of structural rise in the prices of Chinese industrial and agricultural products,the government must aim to coordinate the industrial and agricultural investments and bridge the gap in the industrial and agricultural technologies and supply capacity.
基金Supported by Special Fund for Agro-scientific Research in the Public Interest(201303129)National Science and Technology Project for Bump Crop(2011BAD16B05)Scientific Research Foundation of Sichuan Agricultural University~~
文摘To clarify the effects of mechanical sowing and transplanting on dry mat- ter production of middle-season hybrid rice, a two-factor split plot design was used to study the effects of different sowing and transplanting methods and their interac- tion with the seedling number per hill or seeding time on dry matter accumulation, distribution and transformation of F You 498, a middle-season hybrid rice variety, under field conditions in 2012 and 2013. The results showed that there was a marked effect of the sowing and transplanting methods and their interaction with the seedling number per hill or seeding time on dry matter accumulation, distribution and transformation. The total population dry matter accumulation of the treatments with mechanical direct seeding (MDS) and machine-based transplanting (MT) was lower than that of the treatment with traditional manual transplanting (TMT). How- ever, MDS had higher dry matter accumulation and accumulating rate in the joint- ing-earing stage,and maintained higher stem-sheath exportation, export rate and transformation than MT and TMT; MT had higher dry matter accumulation and ac- cumulating rate in the heading-maturity period than MDS and TMT. Moreover, the treatments with low seedling number per hill or early seeding enhanced the assimi- lation of dry matter after heading,the ratio of dry matter accumulation after earing to biomass yield and the contribution rate of dry matter accumulation after earing, and a reasonable early sowing was favorable to increase the harvest index of middle- season hybrid rice under mechanical sowing and transplanting conditions.
基金supported by the National High Technology Research and Development Program of China (863)(grant no.2007AA06Z220)Important Project of the Ministry of Education(grant no.307014)the Huainan Mining Group program
文摘Based on the production data of a large number of surface drainage wells in the Huainan mining area,the present study shows that four types of typical production characteristics for relieved methane wells are recognized,of which the stable type for production and gas concentration is the most dominate,as determined by a comprehensive study on the volume and concentration of drained gases, as well as the stress changes of rocks influenced by mining.Some influence factors for the productive differences of the drainage wells were also been discussed.The results indicate that protective coal-seam mining has a significant effect on overlying strata,which promotes the development of pores and fractures of coal reservoirs for methane desorption and migration;however,the production and the stability of drainage wells are affected by deformation and damage of the overlying strata.The second distribution of strata stress is caused by mining engineering,and if the stress load is larger than the carrying capacity of the extraction well,the gas production would be influenced by the drainage well that has been damaged by rock movement.Furthermore,the case damage occurs first in the weak, lithologic interface by its special mechanical properties.The stability of drainage wells and the production status are also influenced by the different drilling techniques,uneven distribution of gas concentration,and combination of gob gas and methane from the protected layer.
文摘Strain of Flavobacterium sp.(S-9801),was screened from 207 strains of marine bacteria isolated from the Bohai Sea continental shelf and the Zhujiang Estuary,for its red pigment production.The biological characteristics of strain S-9801 and culture conditions of pigment production have been checked out in this study. The color of the bacterial colony on 2216E medium was from coccineus to rose bengal. Optimum culture conditions were sodium chloride concentration(g/dm3),10~30;pH,3~8;temperature,25~28℃;tryptone and yeast extract as nitrogen sources and glucose as carbon source. Under optimum conditions,pigment accumulation started after 12 h,reaching a maximum rate of synthesis at 36 h.
基金supported by the Special Fund for Meteorology-Scientific Research in the Public Interest,China(GYHY201106020)the National 973 Program of China(2010CB951502)
文摘The spatiotemporal characteristics of hydrothermal resources in southern rice production area of China have changed under the background of climate change,and this change would affect the effectiveness of hydrothermal resources during local rice growing period.According to the cropping system subdivision in southern rice production area of China during 1980s,this study used climate data from 254 meteorological stations and phonological data from 168 agricultural observation stations in the south of China,and adopted 6 international evaluation indices about the effectiveness of hydrothermal resources to analyze the temporal and spatial characteristics of hydrothermal resources during the growing period of single cropping rice system and double cropping rice system for 16 planting zones in the whole study area.The results showed that:in southern rice production area of China,the effectiveness of thermal resources of single cropping rice area(SCRA) was less than that of double cropping rice area(DCRA),whereas the effectiveness of thermal resources of both SARA and DCRA showed a decreasing trend.The index value of effective precipitation satisfaction of SCRA was higher than that of DCRA,nevertheless the index value of effective precipitation satisfaction of both SCRA and DCRA showed a decreasing trend.There was a significant linear relationship between effective thermal resource and water demand,likely water demand increased by 18 mm with every 100°C d increase of effective heat.Effective precipitation satisfaction index(EPSI) showed a negative correlation with effective heat,yet showed a positive correlation with effective precipitation.EPSI reduced by 1% when effective heat resource increased by 125°C d.This study could provide insights for policy makers,land managers or farmers to improve water and heat resource uses and rationally arrange rice production activities under global climate change condition.
基金Supported by National Key Technology R&G Program(Grant No.2012BAF03B01-X)Innovative Research Groups of National Natural Science Foundation of China(Grant No.51121004)
文摘The hump characteristic is one of the main problems for the stable operation of pump turbines in pump mode.However,traditional methods cannot reflect directly the energy dissipation in the hump region.In this paper,3D simulations are carried out using the SST k-ω turbulence model in pump mode under different guide vane openings.The numerical results agree with the experimental data.The entropy production theory is introduced to determine the flow losses in the whole passage,based on the numerical simulation.The variation of entropy production under different guide vane openings is presented.The results show that entropy production appears to be a wave,with peaks under different guide vane openings,which correspond to wave troughs in the external characteristic curves.Entropy production mainly happens in the runner,guide vanes and stay vanes for a pump turbine in pump mode.Finally,entropy production rate distribution in the runner,guide vanes and stay vanes is analyzed for four points under the 18 mm guide vane opening in the hump region.The analysis indicates that the losses of the runner and guide vanes lead to hump characteristics.In addition,the losses mainly occur in the runner inlet near the band and on the suction surface of the blades.In the guide vanes and stay vanes,the losses come from pressure surface of the guide vanes and the wake effects of the vanes.A new insight-entropy production analysis is carried out in this paper in order to find the causes of hump characteristics in a pump turbine,and it could provide some basic theoretical guidance for the loss analysis of hydraulic machinery.
文摘To investigate the characteristics of hydrogen production by a novel fermentative hydrogen-producing bacterial strain B49 (AF481148 in EMBL), batch experiments are conducted under different conditions. Hydrogen production has a correlation with cell growth and the consumption of glucose and soluble protein. The optimum pH for cell growth is 4.5±0.15. At acidic pH 4.0±0.15, the bacteria has the maximum accumulated hydrogen volume of 2382 ml/L culture and the maximum hydrogen evolution rate of 339.9 ml/L culture·h with 1% glucose. The optimum temperature for cell growth and hydrogen production is 35℃. In addition, fermentative hydrogen-producing bacterial strain B49 can generate hydrogen from the decomposition of other organic substrates such as wheat, soybean, corn, and potato. Moreover, it can also produce hydrogen from molasses wastewater and brewage wastewater, and hydrogen yields are 137.9 ml H 2/g COD and 49.9 ml H 2/g COD, respectively.
基金supported by the National Natural Science Foundation of China (31672475)Natural Science Foundation of Qinghai Province (2019-ZJ908)+1 种基金National Key Research and Development Program of China (2016YFC0501901)the Second Comprehensive Scientific Investigation of the Tibetan Plateau (2019QZKK0302)
文摘Alpine meadow plants,adapted to humid and cold environments,are highly sensitive to environmental factors such as drought and heat.However,the physiological responses of individual alpine meadow species to drought and heat stress remain unclear.In this study,four representative species of typical functional groups in an alpine meadow of the Qinghai-Tibet Plateau were selected as experimental materials.Heat(H1,H2),drought(D1,D2),and combined stress(D1H1,D2H2)treatments were implemented to reveal the biomass and physiological characteristics’response to a constant drought and heat environment.Our results showed that the leaf water content(LWC)of Kobresia humilis and Poa annua increased significantly under heat stress and the compound stress(P<0.05).The effect of a single factor on LWC was greater than that of multiple factors.The aboveground biomass(AGB)of Oxytropis ochrocephala and Saussurea pulchra decreased significantly under compound stress(P<0.05).The response patterns of the net photosynthetic rate(Pn)and transpiration rate(Tr)of K.humilis and P.annua under various stress treatments were similar;as were those of O.ochrocephala and S.pulchra.The stomatal conductance(Gs)variation in K.humilis,P.annua,O.ochrocephala,and S.pulchra were the same under three kinds of stress treatments.The photosynthetic characteristics were more sensitive to the effects of composite than those of single factors.The drought×heat×species treatment had a significant influence on various indexes except on height(Ht)and the belowground biomass(BGB)(P<0.01).Within a certain range,daytime temperature(DT)promoted the Ht and increased the LWC of the plants,while it inhibited their AGB and intercellular CO2 concentration(Ci).The Pn,Tr,and Gs were more sensitive to soil moisture than to DT.The results help improve understanding of the physiological response regularity of representative alpine meadow plant species to continuous drought and high temperature conditions at the species level,and provided experimental data and theoretical basis to identify the decisive factors of stress response.
基金financially supported by the National Natural Science Foundation of China(Grant No.51890914)the Major Scientific and Technological Projects of CNPC(Grant No.ZD2019-184-004-003)the Innovation fund project for graduate student of China University of Petroleum(East China)(Grant No.22CX04034A)。
文摘Formation subsidence is inevitable during marine hydrate decomposition,and the consequent casing deformation seriously threatens the security of sustainable hydrate production.Owing to insufficient observed data of formation subsidence in field,displacement boundary condition of casing is undetermined.Thus the conventional static methods are inapplicable for the calculation of casing deformation in hydrate production well.The present work aims at proposing an approach to investigate dynamic deformation of the casing during hydrate production.In the proposed methodology,based on the movement theory of hydrate decomposition front,hydrate decomposition process can be simulated,in which hydrate reservoir strength formation subsidence showed time-dependent characteristics.By considering the actual interactions among casing,cement and formation,three models of hydrate production well are developed to reveal the static and dynamic deformation mechanisms of the casing.The application of the proposed methodology is demonstrated through a case study.Results show that buckling deformation and bending deformation of casing reduce the passing ability of downhole tools in deformed casing by 4.2%and 7.5%,respectively.With the progress of hydrate production,buckling deformation will increase obviously,while a little increase of bending deformation will occur,as the formation slippage induced by formation inclination is much larger than that caused by hydrate decomposition.The proposed approach can provide theoretical reference for improving casing integrity of marine hydrate production.