Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient funct...Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).展开更多
In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which includ...In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which include an at most 3v-valued theorem.These results extend the existing achievements of some scholars.展开更多
文摘Under suitable conditions on {X-n}, the author obtains the important results: it is almost sure that the random integral function f(w) = Sigma (infinity)(n=0) X(n)z(n) (of finite positive order) has no deficient function, and any direction is a Borel direction (without finite exceptional value) of f(w).
基金supported by the Natural Science Foundation of China(11871108)Teacher Research Capacity Promotion Program of Beijing Normal University Zhuhai+2 种基金Guangdong Natural Science Foundation(2018A030313954)Guangdong Universities(Basic Research and Applied Research)Major Project(2017KZDXM038)Guangdong Provincical Anti-monopoly Law Enforcement and Big Data Analysis Research Center Project(2019D04)。
文摘In this article,we discuss,by Nevanlinna theory,the influence of multiple values and deficiencies on the uniqueness problem of algebroid functions.We get several uniqueness theorems of algebroid functions which include an at most 3v-valued theorem.These results extend the existing achievements of some scholars.