期刊文献+
共找到5篇文章
< 1 >
每页显示 20 50 100
Trajectory tracking anti-disturbance control for unmanned aerial helicopter based on disturbance characterization index 被引量:1
1
作者 Linbo Chen Tao Li +1 位作者 Lijun Liu Zehui Mao 《Control Theory and Technology》 EI CSCD 2023年第2期233-245,共13页
This work studies the trajectory tracking control for unmanned aerial helicopter(UAH)system under both matched disturbance and mismatched ones.Initially,to tackle the strong coupling,an input-output feedback lineariza... This work studies the trajectory tracking control for unmanned aerial helicopter(UAH)system under both matched disturbance and mismatched ones.Initially,to tackle the strong coupling,an input-output feedback linearization method is utilized to simplify the nonlinear UAH system.Secondly,a set of finite-time disturbance observers(FTDOs)are proposed to estimate mismatched disturbances with their successive derivatives,which are utilized to design the feedforward controller via backstepping.Thirdly,as for matched disturbance,by defining the disturbance characterization index(DCI)to determine whether the disturbance is harmful or not for the UAH system,a feedback controller is proposed and a sufficient condition is established to ensure the convergence of the tracking error.Finally,some numerical simulations and comparisons illustrate the validity and advantages of our control scheme. 展开更多
关键词 Unmanned aerial helicopter(UAH) Trajectory tracking control Finite-time disturbance observer(FTDO) Backstepping control Disturbance characterization index(DCI)
原文传递
Characterization of alpine meadow surface crack and its correlation with root-soil properties
2
作者 WU Yuechen ZHU Haili +5 位作者 ZHANG Yu ZHANG Hailong LIU Guosong LIU Yabin LI Guorong HU Xiasong 《Journal of Arid Land》 SCIE CSCD 2024年第6期834-851,共18页
Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex c... Quantifying surface cracks in alpine meadows is a prerequisite and a key aspect in the study of grassland crack development.Crack characterization indices are crucial for the quantitative characterization of complex cracks,serving as vital factors in assessing the degree of cracking and the development morphology.So far,research on evaluating the degree of grassland degradation through crack characterization indices is rare,especially the quantitative analysis of the development of surface cracks in alpine meadows is relatively scarce.Therefore,based on the phenomenon of surface cracking during the degradation of alpine meadows in some regions of the Qinghai-Tibet Plateau,we selected the alpine meadow in the Huangcheng Mongolian Township,Menyuan Hui Autonomous County,Qinghai Province,China as the study area,used unmanned aerial vehicle(UAV)sensing technology to acquire low-altitude images of alpine meadow surface cracks at different degrees of degradation(light,medium,and heavy degradation),and analyzed the representative metrics characterizing the degree of crack development by interpreting the crack length,length density,branch angle,and burrow(rat hole)distribution density and combining them with in situ crack width and depth measurements.Finally,the correlations between the crack characterization indices and the soil and root parameters of sample plots at different degrees of degradation in the study area were analyzed using the grey relation analysis.The results revealed that with the increase of degradation,the physical and chemical properties of soil and the mechanical properties of root-soil composite changed significantly,the vegetation coverage reduced,and the root system aggregated in the surface layer of alpine meadow.As the degree of degradation increased,the fracture morphology developed from"linear"to"dendritic",and eventually to a complex and irregular"polygonal"pattern.The crack length,width,depth,and length density were identified as the crack characterization indices via analysis of variance.The results of grey relation analysis also revealed that the crack length,width,depth,and length density were all highly correlated with root length density,and as the degradation of alpine meadows intensified,the underground biomass increased dramatically,forming a dense layer of grass felt,which has a significant impact on the formation and expansion of cracks. 展开更多
关键词 alpine meadow grassland degradation grassland cracks crack characterization index crack morphology root length density grey relation analysis
下载PDF
Proposal of Equivalent Porosity Indicator for Foam Aluminum Based on GRNN
3
作者 Wenhao Da Lucai Wang +3 位作者 Yanli Wang Xiaohong You Wenzhan Huang Fang Wang 《Journal of Harbin Institute of Technology(New Series)》 CAS 2024年第5期16-31,共16页
To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these in... To gain a more comprehensive understanding and evaluate foam aluminum's performance,researchers have introduced various characterization indicators.However,the current understanding of the significance of these indicators in analyzing foam aluminum's performance is limited.This study employs the Generalized Regression Neural Network(GRNN)method to establish a model that links foam aluminum's microstructure characterization data with its mechanical properties.Through the GRNN model,researchers extracted four of the most crucial features and their corresponding weight values from the 13 pore characteristics of foam aluminum.Subsequently,a new characterization formula,called“Wang equivalent porosity”(WEP),was developed by using residual weights assigned to the feature weights,and four parameter coefficients were obtained.This formula aims to represent the relationship between foam aluminum's microstructural features and its mechanical performance.Furthermore,the researchers conducted model verification using compression data from 11 sets of foam aluminum.The validation results showed that among these 11 foam aluminum datasets,the Gibson-Ashby formula yielded anomalous results in two cases,whereas WEP exhibited exceptional stability without any anomalies.In comparison to the Gibson-Ashby formula,WEP demonstrated an 18.18%improvement in evaluation accuracy. 展开更多
关键词 aluminum foam characterization index importance analysis feature learning
下载PDF
Characterization of external refractive index sensitivity of a photonic crystal fiber long-period grating 被引量:3
4
作者 Fei Tian Jiri Kanka Henry Du 《Chinese Optics Letters》 SCIE EI CAS CSCD 2015年第7期45-47,共3页
Long-period gratings (LPGs) are fabricated in a photonic crystal fiber (PCF) using the symmetric point- by-point CO2 laser irradiation method to explore the sensitivity characterization of PCF-LPG. Numerical sim- ... Long-period gratings (LPGs) are fabricated in a photonic crystal fiber (PCF) using the symmetric point- by-point CO2 laser irradiation method to explore the sensitivity characterization of PCF-LPG. Numerical sim- ulation is used to guide the investigation. It is found that the refractive index (RI) sensitivity of PCF-LPG depends on the coupled cladding modes as well as the coupled resonance wavelength (RW) of the LPG. Experimental studies show that the longer the RW, the higher the RI sensitivity for the same cladding mode. At similar RWs, the lower the cladding mode, the higher the RI sensitivity of PCF-LPG. 展开更多
关键词 PCF LPG characterization of external refractive index sensitivity of a photonic crystal fiber long-period grating
原文传递
Applying energy theory to understand the relationship between the Yangtze River and Poyang Lake 被引量:1
5
作者 陈莫非 邓金运 +1 位作者 范少英 李义天 《Journal of Geographical Sciences》 SCIE CSCD 2018年第8期1059-1071,共13页
The complex relationship between the Yangtze River and Poyang Lake controls the exchange of water and sediment between the two, and exerts effects on water resources, flooding, shipping, and the ecological environment... The complex relationship between the Yangtze River and Poyang Lake controls the exchange of water and sediment between the two, and exerts effects on water resources, flooding, shipping, and the ecological environment. The theory of energy is applied in this paper to investigate the physical mechanisms that determine the nature of the contact between the Yangtze River and Poyang Lake and to establish an energy difference (Fe) index to quantify the interactions between the two systems. Data show that Fe values for this interac- tion have increased since the 1950s, indicating a weakening in the river effect while the lake effect has been enhanced, Enclosure of the Three Gorges Reservoir (TGR) has also signifi- cantly influenced the relationship between the river and the lake by further reducing the im- pacts of the Yangtze River, The river effect also increases slightly during the dry season, and decreases significantly at the end of the flooding period, while interactions between the two to some extent influence the development of droughts and floods within the lake area. Data show that when the flow of the five rivers within this area is significant and a blocking effect due to the Yangtze River is also clearly apparent, floods occur easily; in contrast, when the opposite is true and the flow of the five rivers is small, and the Yangtze River can accommodate the flow, droughts occur frequently. Construction and enclosure of the TGR also means that the lake area is prone to droughts during September and October. 展开更多
关键词 Poyang Lake Yangtze River river-lake relationship Three Gorges Reservoir characterization index
原文传递
上一页 1 下一页 到第
使用帮助 返回顶部