Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathic disorder. CMT is clinically and genetically heterogeneous. To date, 27 genes associated with the disease have been cloned. The pr...Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathic disorder. CMT is clinically and genetically heterogeneous. To date, 27 genes associated with the disease have been cloned. The present study carried out clinical classification according to clinical, electrophysiological and pathological features, conducted inheritance classification according to inheritance patterns, and performed mutation analysis of 13 CMT disease genes (PMP22, CX32, HSPB1, MNF2, MPZ, HSPB8, GDAP1, NFL, EGR2, SIMPLE, RAB7, LMNA, MTMR2) in 57 Chinese probands with CMT. Five cases of AD-CMT1 and 13 cases of sporadic CMT1 were diagnosed as CMT1A; five cases of X-CMT1, one case of X-CMT2 and one case of sporadic CMT1 were diagnosed as CMTXl; four cases of AD-CMT2 were diagnosed as CMT2F; one case of AD-CMT2 and one case of sporadic CMT2 were diagnosed as CMT2A2; one case of AD-CMT2 was diagnosed as CMT2L; one case of AD-CMT2 was diagnosed as CMT2J; one case of AR-CMT1 was diagnosed as CMT4A. Among the 57 CMT probands, seven genotypes were determined among 34 patients, with a detection rate of 59.6%. The results indicated that the clinical classification and inheritance classification are indispensable for selecting potential disease genes for mutation detection, and for efficient molecular diagnosis.展开更多
We used the allele-specific PCR-double digestion method on peripheral myelin protein 22 (PMP22) to determine duplication and deletion mutations in the proband and family members of one family with Charcot-Marie-Toot...We used the allele-specific PCR-double digestion method on peripheral myelin protein 22 (PMP22) to determine duplication and deletion mutations in the proband and family members of one family with Charcot-Marie-Tooth disease type 1 and one family with hereditary neuropathy with liability to pressure palsies. The proband and one subclinical family member from the Charcot-Marie-Tooth disease type 1 family had a PMP22 gene duplication; one patient from the hereditary neuropathy with liability to pressure palsies family had a PMP22 gene deletion. Electron microscopic analysis of ultrathin sections of the superficial peroneal nerve from the two probands demonstrated demyelination and myelin sheath hyperplasia, as well as an 'onion-like' structure in the Charcot-Marie-Tooth disease type 1A patient. We observed an irregular thickened myelin sheath and 'mouse-nibbled'-Iike changes in the patient with hereditary neuropathy with liability to pressure palsies. In the Charcot-Marie-Tooth disease type 1A patient, nerve electrophysiological examination revealed moderate-to-severe reductions in the motor and sensory conduction velocities of the bilateral median nerve, ulnar nerve, tibial nerve, and sural nerve. Moreover, the compound muscle action potential amplitude was decreased. In the patient with hereditary neuropathy with liability to pressure palsies, the nerve conduction velocity of the bilateral tibial nerve and sural nerve was moderately reduced, and the nerve conduction velocity of the median nerve and ulnar nerve of both upper extremities was slightly reduced.展开更多
Background: Among patients with Charcot-Marie-Tooth disease (CMT), the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type, accounting for approxi...Background: Among patients with Charcot-Marie-Tooth disease (CMT), the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type, accounting for approximately 90% of all CMTX. More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32). CX32 is thought to form gap junctions that promote the diffusion pathway between cells. GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin, and novel mutations are continually discovered. Methods: We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20, 2012, to December 31, 2015. Clinical examination, nerve conduction studies, and molecular and bioinformatics analyses were performed to identify patients with CMTX 1. Results: Nine GJBI mutations (c.283G〉A, c.77C〉T, c.643C〉T, c.515C〉T, c.191G〉A, c.610C〉T, c.490C〉T, c.491G〉A, and c.44G〉A) were discovered in nine patients. Median motor nerve conduction velocities of all nine patients were 〈 38 m/s, resembling CMT Type 1. Three novel mutations, c.643C〉T, c.191G〉A, and c.610C〉T, were revealed and bioinformatics analyses indicated high pathogenicity. Conclusions: The three novel missense mutations within the GJB1 gene broaden the mutational diversity ofCMT1X. Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations.展开更多
基金the National Natural Science Foundation of China, No. 81071001, 30600200the Natural Science Foundation of Hu-nan Province, No. 2006JJ30009
文摘Charcot-Marie-Tooth (CMT) disease is the most common inherited peripheral neuropathic disorder. CMT is clinically and genetically heterogeneous. To date, 27 genes associated with the disease have been cloned. The present study carried out clinical classification according to clinical, electrophysiological and pathological features, conducted inheritance classification according to inheritance patterns, and performed mutation analysis of 13 CMT disease genes (PMP22, CX32, HSPB1, MNF2, MPZ, HSPB8, GDAP1, NFL, EGR2, SIMPLE, RAB7, LMNA, MTMR2) in 57 Chinese probands with CMT. Five cases of AD-CMT1 and 13 cases of sporadic CMT1 were diagnosed as CMT1A; five cases of X-CMT1, one case of X-CMT2 and one case of sporadic CMT1 were diagnosed as CMTXl; four cases of AD-CMT2 were diagnosed as CMT2F; one case of AD-CMT2 and one case of sporadic CMT2 were diagnosed as CMT2A2; one case of AD-CMT2 was diagnosed as CMT2L; one case of AD-CMT2 was diagnosed as CMT2J; one case of AR-CMT1 was diagnosed as CMT4A. Among the 57 CMT probands, seven genotypes were determined among 34 patients, with a detection rate of 59.6%. The results indicated that the clinical classification and inheritance classification are indispensable for selecting potential disease genes for mutation detection, and for efficient molecular diagnosis.
基金funded by the National Natural Science Foundation of China, grant No. 81071001 and 30600200
文摘We used the allele-specific PCR-double digestion method on peripheral myelin protein 22 (PMP22) to determine duplication and deletion mutations in the proband and family members of one family with Charcot-Marie-Tooth disease type 1 and one family with hereditary neuropathy with liability to pressure palsies. The proband and one subclinical family member from the Charcot-Marie-Tooth disease type 1 family had a PMP22 gene duplication; one patient from the hereditary neuropathy with liability to pressure palsies family had a PMP22 gene deletion. Electron microscopic analysis of ultrathin sections of the superficial peroneal nerve from the two probands demonstrated demyelination and myelin sheath hyperplasia, as well as an 'onion-like' structure in the Charcot-Marie-Tooth disease type 1A patient. We observed an irregular thickened myelin sheath and 'mouse-nibbled'-Iike changes in the patient with hereditary neuropathy with liability to pressure palsies. In the Charcot-Marie-Tooth disease type 1A patient, nerve electrophysiological examination revealed moderate-to-severe reductions in the motor and sensory conduction velocities of the bilateral median nerve, ulnar nerve, tibial nerve, and sural nerve. Moreover, the compound muscle action potential amplitude was decreased. In the patient with hereditary neuropathy with liability to pressure palsies, the nerve conduction velocity of the bilateral tibial nerve and sural nerve was moderately reduced, and the nerve conduction velocity of the median nerve and ulnar nerve of both upper extremities was slightly reduced.
文摘Background: Among patients with Charcot-Marie-Tooth disease (CMT), the X-linked variant (CMTX) caused by gap junction protein beta 1 (GJB1) gene mutation is the second most frequent type, accounting for approximately 90% of all CMTX. More than 400 mutations have been identified in the GJB1 gene that encodes connexin 32 (CX32). CX32 is thought to form gap junctions that promote the diffusion pathway between cells. GJB1 mutations interfere with the formation of the functional channel and impair the maintenance of peripheral myelin, and novel mutations are continually discovered. Methods: We included 79 unrelated patients clinically diagnosed with CMT at the Department of Neurology of the Chinese People's Liberation Army General Hospital from December 20, 2012, to December 31, 2015. Clinical examination, nerve conduction studies, and molecular and bioinformatics analyses were performed to identify patients with CMTX 1. Results: Nine GJBI mutations (c.283G〉A, c.77C〉T, c.643C〉T, c.515C〉T, c.191G〉A, c.610C〉T, c.490C〉T, c.491G〉A, and c.44G〉A) were discovered in nine patients. Median motor nerve conduction velocities of all nine patients were 〈 38 m/s, resembling CMT Type 1. Three novel mutations, c.643C〉T, c.191G〉A, and c.610C〉T, were revealed and bioinformatics analyses indicated high pathogenicity. Conclusions: The three novel missense mutations within the GJB1 gene broaden the mutational diversity ofCMT1X. Molecular analysis of family members and bioinformatics analyses of the afflicted patients confirmed the pathogenicity of these mutations.