Using the reductive perturbation method,we have derived the Kadomtsev-Petviashvili(KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in pair-ion(p-i) plasmas....Using the reductive perturbation method,we have derived the Kadomtsev-Petviashvili(KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in pair-ion(p-i) plasmas.We have chosen the fluid model for the positive ions,the negative ions,and a fraction of static charged(both positively and negatively) dust particles.Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed.It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma.It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied.It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions,and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions.As the pair-ion plasma mimics the electron-positron plasma,thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.展开更多
The nonlinear propagation of dust acoustic waves is investigated in four-component plasmas consisting of positively charged dust grains, trapped ions, nonthermal electrons, and photoelectron due to ultraviolet irradia...The nonlinear propagation of dust acoustic waves is investigated in four-component plasmas consisting of positively charged dust grains, trapped ions, nonthermal electrons, and photoelectron due to ultraviolet irradiation.We use generalized viscoelastic hydrodynamic model for strongly coupled dust grain. In the weak nonlinearity limit, a modified Kadomstev–Petviashvili(KP) equation and a modified KP-Burger equation, which have a damping term coming from nonadiabatic charge variation, have been derived in the kinetic regime and hydrodynamic regime, respectively. With the increasing of UV photon flux, the hydrodynamic regime changes to kinetic regime. The approximate analytical line soliton and shock solutions are investigated in the kinetic regime and hydrodynamic regime, respectively.展开更多
The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P va...The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.展开更多
文摘Using the reductive perturbation method,we have derived the Kadomtsev-Petviashvili(KP) equation to study the nonlinear properties of electrostatic collisionless dust ion-acoustic solitons in pair-ion(p-i) plasmas.We have chosen the fluid model for the positive ions,the negative ions,and a fraction of static charged(both positively and negatively) dust particles.Numerical solutions of these dust ion-acoustic solitons are plotted and their characteristics are discussed.It is found that only the amplitudes of the electrostatic dust ion-acoustic solitons vary when the dust is introduced in the pair-ion plasma.It is also noticed that the amplitude and the width of these solitons both vary when the thermal energy of the positive or negative ions is varied.It is shown that potential hump structures are formed when the temperature of the negative ions is higher than that of the positive ions,and potential dip structures are observed when the temperature of the positive ions supersedes that of the negative ions.As the pair-ion plasma mimics the electron-positron plasma,thus our results might be helpful in understanding the nonlinear dust ion acoustic solitary waves in super dense astronomical bodies.
基金Supported by National Natural Science Foundation of China under Grant No.11104012 the Fundamental Research Funds for the Central Universities under Grant Nos.FRF-TP-09-019A and FRF-BR-11-031B
文摘The nonlinear propagation of dust acoustic waves is investigated in four-component plasmas consisting of positively charged dust grains, trapped ions, nonthermal electrons, and photoelectron due to ultraviolet irradiation.We use generalized viscoelastic hydrodynamic model for strongly coupled dust grain. In the weak nonlinearity limit, a modified Kadomstev–Petviashvili(KP) equation and a modified KP-Burger equation, which have a damping term coming from nonadiabatic charge variation, have been derived in the kinetic regime and hydrodynamic regime, respectively. With the increasing of UV photon flux, the hydrodynamic regime changes to kinetic regime. The approximate analytical line soliton and shock solutions are investigated in the kinetic regime and hydrodynamic regime, respectively.
文摘The charge density fluctuation of low frequency in a dusty plasma, which is derived from the longitudinal dielectric permittivity of the dusty plasma, has been studied by kinetic theory. The results show that the P value, which describes the relative charge density on the dust in the plasma, and the charging frequency of a dust particle Ωc, which describes the ratio of charge changing of the dust particles, determine the character of the charge density fluctuation of low frequency. For a dusty plasma of P<<1, when the charging frequency Ωc is much smaller than the dusty plasma frequency wd, there is a strong charge density fluctuation which is of character of dust acoustic eigen wave. For a dusty plasma of P>>1, when the frequency Ωc, is much larger than wd there are weaker fluctuations with a wide spectrum. The results have been applied to the ionosphere and the range of radius and density of dust particles is found, where a strong charge density fluctuation of low frequency should exist.