Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface char...Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface charges is inevitable.Here we obtain positively and negatively charged surfaces using Li Ta O_(3) crystals and observe that a large net surface charge up to 0.1 C/m;can nominally change the contact angles of pure water droplets comparing to the same uncharged surface.However,even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols.Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet,while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface.Our results not only provide a fundamental understanding of the interactions between charged surfaces and water,but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments.展开更多
Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant ...Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.展开更多
Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy...Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.展开更多
In situ changes in the nanofriction and microstructures of ionic liquids(ILs)on uncharged and charged surfaces have been investigated using colloid probe atomic force microscopy(AFM)and molecular dynamic(MD)simulation...In situ changes in the nanofriction and microstructures of ionic liquids(ILs)on uncharged and charged surfaces have been investigated using colloid probe atomic force microscopy(AFM)and molecular dynamic(MD)simulations.Two representative ILs,[BMIM][BF_(4)](BB)and[BMIM][PF_(6)](BP),containing a common cation,were selected for this study.The torsional resonance frequency was captured simultaneously when the nanoscale friction force was measured at a specified normal load;and it was regarded as a measure of the contact stiffness,reflecting in situ changes in the IL microstructures.A higher nanoscale friction force was observed on uncharged mica and highly oriented pyrolytic graphite(HOPG)surfaces when the normal load increased;additionally,a higher torsional resonance frequency was detected,revealing a higher contact stiffness and a more ordered IL layer.The nanofriction of ILs increased at charged HOPG surfaces as the bias voltage varied from 0 to 8 V or from 0 to−8 V.The simultaneously recorded torsional resonance frequency in the ILs increased with the positive or negative bias voltage,implying a stiffer IL layer and possibly more ordered ILs under these conditions.MD simulation reveals that the[BMIM]+imidazolium ring lies parallel to the uncharged surfaces preferentially,resulting in a compact and ordered IL layer.This parallel“sleeping”structure is more pronounced with the surface charging of either sign,indicating more ordered ILs,thereby substantiating the AFM-detected stiffer IL layering on the charged surfaces.Our in situ observations of the changes in nanofriction and microstructures near the uncharged and charged surfaces may facilitate the development of IL-based applications,such as lubrication and electrochemical energy storage devices,including supercapacitors and batteries.展开更多
Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DN...Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ss DNA will collapse due to the existence of electrostatic interaction between ss DNA and charged nanoparticle surface; ii)for the short ss DNA chains with the number of bases less than 10, the switching of ss DNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ss DNA and charged nanoparticle surface becomes weak dramatically, and ss DNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ss DNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ss DNA will not happen if the grafting densities are too high.展开更多
The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable ch...The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable challenges.Moreover,existing researches on all-organic insulation focus on capturing electrons,contrary to alleviating charge accumulation.Here,an all-organic modification coating was prepared on polystyrene(PS)with the large-scale atmospheric-pressure plasma,which exhibits outperformed function in mitigating surface charge accumulation.The surface charge dissipation rate and surface conductivity are promoted by about 1.37 and 9.45 times,respectively.Simulation and experimental results show that this all-organic modification coating has a smaller electron affinity potential compared with PS.The decrease of electron affinity potential may result in accelerated surface charge decay of PS,which has never been involved in previous works.Moreover,this coating also has good reliability in a repeated surface flashover.This facile and large-scale approach brings up a novel idea for surface charge regulation and the manufacture of advanced dielectric polymers.展开更多
The electrokinetic behavior and surface dissolution of serpentine mineral were studied through Zeta potential measurements, dissolution experiments and X-ray photoelectron spectroscopy. The results show that serpentin...The electrokinetic behavior and surface dissolution of serpentine mineral were studied through Zeta potential measurements, dissolution experiments and X-ray photoelectron spectroscopy. The results show that serpentine has an iso-electric point (IEP) of 11.9, which is higher than that of other phyllosilicate minerals. Dissolution experiments show that the hydroxyl is easy to dissolve with respect to the magnesium cations in the magnesium oxide octahedral sheet. As a result of hydroxyl dissolution, the magnesium ions are left on serpentine surface, which is responsible for serpentine surface charge. The removal of magnesium ions from serpentine surface by acid leaching results in a decrease of serpentine IEP. Therefore, it has been clearly established that the surface charge developed at the serpentine/aqueous electrical interface is a function of the serpentine surface incongruent dissolution.展开更多
Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechani...Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability.展开更多
Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although th...Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated.High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled.We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress(>30 pNnm)inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges.In addition,the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity.The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending.The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics.The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear.The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.展开更多
Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble ...Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble and exchangeable(SE), weakly specific adsorbed(WSA), Fe and Mn oxides bound(OX) and organic bound(ORG). The results showed that fractions of heavy metals in the soil subsamples depended on their speciation. About 90% of Cd and 75% of Zn existed in soil subsamples in the SE fraction. Lead and Cu existed in soil subsamples as SE, WSA and OX fractions simultaneously, although SE was still the major fraction. Organic bound heavy metals were not clearly apparent in all the soil subsamples. The concentration of some heavy metal fractions in soil subsamples showed the good correlation with ionic impulsion of soil, especially for the SE fraction. Continuous saturation of soil subsamples with 0.20 mol/L NH 4Cl, which is the first step for determination of the negative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. It was found that the percentage desorption of heavy metals from soil subsamples depended greatly on pH, the composition and original heavy metal content of the soil subsamples. However, most of the heavy metals in the soil subsamples were still be retained after multiple saturation. Compared with the parent soil, the negative surface charge of soil subsamples loaded with heavy metals did not show difference significantly from that of the parent one by statistical analysis. Heavy metals existed in the soil subsamples mainly as exchangeable and precipitated simultaneously.展开更多
A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and us...A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).展开更多
The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP...The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe203 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe203 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(bo) of the montmorillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does cosinβ with mass fractions of SlOE and Fe2O3. And there is no specific relationship between bo and IEP of different montmorillonites, but there is positive correlation between cosinβ and IEP of different montmorillonite samples.展开更多
Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels techni...Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample's thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.展开更多
Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation betw...Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.展开更多
Au Pd nanoalloys with tunable Pd concentrations have been synthesized and used as model catalysts. They have been directly imaged by high-angle annular dark-field scanning transmission electron microscopy and investig...Au Pd nanoalloys with tunable Pd concentrations have been synthesized and used as model catalysts. They have been directly imaged by high-angle annular dark-field scanning transmission electron microscopy and investigated by thorough analyses of their extended X-ray absorption fine structure, X-ray absorption near-edge structure, X-ray diffraction and X-ray photoelectron spectroscopy measurements. The bimetallic nanoparticles are embedded in a carbonaceous matrix and have almost an identical structure at the atomic level and the same electronic properties as Au Pd bulk alloys with the same compositions. The d-electron increase at surface Pd sites is determined by the Pd concentration of the alloy. Similarly, their activation entropy and catalytic activity for the hydrogenation of quinoline is related to the Pd concentration, with Au50 Pd50 the most active of the alloys investigated. An almost 11 times higher activity was achieved compared to a pure Pd catalyst. The experimentally measurable surface d charge at the Pd sites in the Au Pd was found to linearly correlate with the activation entropy and catalytic activity for the hydrogenation of quinoline. The alloy structure is stable, showing negligible metal segregation, dissolution-redeposition and aggregation during the hydrogenation process which involves strong adsorption.展开更多
Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the applica...Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.展开更多
In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the elec...In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the electrical performances measured.The obtained results show that compared with untreated and single treated samples,the samples treated by step gradient modification significantly improve the flashover performance.According to experiment and simulation,the mechanism explanations are summarized as follows.First,it is found that the step gradient conductivity can effectively optimize the electric field distribution of a needle-needle electrode.Then,step gradient modification suppresses the accumulation of surface charge at the triple junction and makes the charge distribution more uniform.Furthermore,it can accelerate the surface dissipation on a high electrical field region and control the dissipation rate on a low electrical field region.All these results can restrain surface discharge and increase the flashover voltage.The step gradient modification method proposed in this paper provides a new idea for improving the surface insulation performance.展开更多
The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron ...The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.展开更多
In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influenc...In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.展开更多
Non-thermal plasma surface modification for epoxy resin(EP)to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulatedtransmission line.In this paper,a pulsed Ar...Non-thermal plasma surface modification for epoxy resin(EP)to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulatedtransmission line.In this paper,a pulsed Ar dual dielectrics atmospheric-pressure plasma jet(APPJ)was used for Si CxHyOzthin film deposition on EP samples.The film deposition was optimized by varying the treatment time while other parameters were kept at constants(treatment distance:10 mm,precursor flow rate:0.6 l min-(-1),maximum instantaneous power:3.08 k W and single pulse energy:0.18 m J).It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18%and 13%when the deposition time was3 min,respectively.The flashover voltage reduced as treatment time increased.Moreover,all the surface conductivity,surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min.Other measurements,such as atomic force microscopy and scanning electron microscope for EP surface morphology,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions,optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms.The results indicated that the original organic groups(C–H,C–C,C=O,C=C)were gradually replaced by the Si containing inorganic groups(Si–O–Si and Si–OH).The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage.However,when the plasma treatment time was longer than 3 min,the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.展开更多
基金Project supported by the National Natural Science Foundation of China(Grant Nos.12025407,11934003,9185012011774328)+1 种基金the Key R&D Program of China(Grant No.2016YFA0300902)the Chinese Academy of Sciences。
文摘Interactions between water and solid substrates are of fundamental importance to various processes in nature and industry.Electric control is widely used to modify interfacial water,where the influence of surface charges is inevitable.Here we obtain positively and negatively charged surfaces using Li Ta O_(3) crystals and observe that a large net surface charge up to 0.1 C/m;can nominally change the contact angles of pure water droplets comparing to the same uncharged surface.However,even a small amount of surface charge can efficiently increase the water contact angle in the presence of aerosols.Our results indicate that such surface charges can hardly affect the structure of interfacial water molecular layers and the morphology of the macroscopic droplet,while adsorption of a small amount of organic contaminants from aerosols with the help of Coulomb attraction can notably decrease the wettability of solid surface.Our results not only provide a fundamental understanding of the interactions between charged surfaces and water,but also help to develop new techniques on electric control of wettability and microfluidics in real aerosol environments.
基金supported by the National Key Research and Development Plan of China(No.2021YFE0114700)National Natural Science Foundation of China(No.52377145).
文摘Secondary electron emission(SEE)induced by the positive ion is an essential physical process to influence the dynamics of gas discharge which relies on the specific surface material.Surface charging has a significant impact on the material properties,thereby affecting the SEE in the plasma-surface interactions.However,it does not attract enough attention in the previous studies.In this paper,SEE dependent on the charged surface of specific materials is described with the computational method combining a density functional theory(DFT)model from the first-principle theory and the theory of Auger neutralization.The effect ofκ-Al2O3 surface charge,as an example,on the ion-induced secondary electron emission coefficient(SEEC)is investigated by analyzing the defect energy level and band structure on the charged surface.Simulation results indicate that,with the surface charge from negative to positive,the SEEC of a part of low ionization energy ions(such as Ei=12.6 eV)increases first and then decreases,exhibiting a nonlinear changing trend.This is quite different from the monotonic decreasing tendency observed in the previous model which simplifies the electronic structure.This irregular increase of the SEEC can be attributed to the lower escaped probability of orbital energy.The results further illustrate that the excessive charge could cause the bottom of the conduction band close to the valence band,thus leading to the decrease of the orbital energy occupied by the excited electrons.The nonlinear change of SEEC demonstrates a more realistic situation of how the electronic structure of material surface influences the SEE process.This work provides an accurate method of calculating SEEC from specific materials,which is urgent in widespread physical scenarios sensitive to surface materials,such as increasingly growing practical applications concerning plasma-surface interactions.
基金funded by the National Key Research and Development Program of China(2018YFA0900702).
文摘Biocatalysis in organic solvents(OSs)has numerous important applications,but native enzymes in OSs often exhibit limited catalytic performance.Herein,we proposed a computation-aided surface charge engineering strategy to improve the catalytic performance of haloalkane dehalogenase DhaA in OSs based on the energetic analysis of substrate binding to the DhaA surface.Several variants with enhanced OS resistance were obtained by replacing negative charged residues on the surface with positive charged residue(Arg).Particularly,a four-substitution variant E16R/E93R/E121R/E257R exhibited the best catalytic performance(five-fold improvement in OS resistance and seven-fold half-life increase in 40%(vol)dimethylsulfoxide).As a result,the overall catalytic performance of the variant could be at least 26 times higher than the wild-type DhaA.Fluorescence spectroscopy and molecular dynamics simulation studies revealed that the residue substitution mainly enhanced OS resistance from four aspects:(a)improved the overall structural stability,(b)increased the hydrophobicity of the local microenvironment around the catalytic triad,(c)enriched the hydrophobic substrate around the enzyme molecule,and(d)lowered the contact frequency between OS molecules and the catalytic triad.Our findings validate that computationaided surface charge engineering is an effective and ingenious rational strategy for tailoring enzyme performance in OSs.
基金This work was supported by the Natural Science Foundation of Jiangsu Province(No.BK20191289)the National Natural Science Foundation of China(Nos.21838004,21978134,and 21676137)+2 种基金the National Key R&D Program of China(No.2018YFB0204403)the Swedish Research Council(No.2018-04133)the German Research Foundation,DFG(No.GN 92/16-1).
文摘In situ changes in the nanofriction and microstructures of ionic liquids(ILs)on uncharged and charged surfaces have been investigated using colloid probe atomic force microscopy(AFM)and molecular dynamic(MD)simulations.Two representative ILs,[BMIM][BF_(4)](BB)and[BMIM][PF_(6)](BP),containing a common cation,were selected for this study.The torsional resonance frequency was captured simultaneously when the nanoscale friction force was measured at a specified normal load;and it was regarded as a measure of the contact stiffness,reflecting in situ changes in the IL microstructures.A higher nanoscale friction force was observed on uncharged mica and highly oriented pyrolytic graphite(HOPG)surfaces when the normal load increased;additionally,a higher torsional resonance frequency was detected,revealing a higher contact stiffness and a more ordered IL layer.The nanofriction of ILs increased at charged HOPG surfaces as the bias voltage varied from 0 to 8 V or from 0 to−8 V.The simultaneously recorded torsional resonance frequency in the ILs increased with the positive or negative bias voltage,implying a stiffer IL layer and possibly more ordered ILs under these conditions.MD simulation reveals that the[BMIM]+imidazolium ring lies parallel to the uncharged surfaces preferentially,resulting in a compact and ordered IL layer.This parallel“sleeping”structure is more pronounced with the surface charging of either sign,indicating more ordered ILs,thereby substantiating the AFM-detected stiffer IL layering on the charged surfaces.Our in situ observations of the changes in nanofriction and microstructures near the uncharged and charged surfaces may facilitate the development of IL-based applications,such as lubrication and electrochemical energy storage devices,including supercapacitors and batteries.
基金Project supported by the Joint Funds of Xinjiang Natural Science Foundation,China(Grant No.2015211C298)
文摘Using a molecular theory, we investigate the temperature-dependent self-assembly of single-stranded DNA(ss DNA)tethered to a charged nanoparticle surface. Here the size, conformations, and charge properties of ss DNA are taken into account. The main results are as follows: i) when the temperature is lower than the critical switching temperature, the ss DNA will collapse due to the existence of electrostatic interaction between ss DNA and charged nanoparticle surface; ii)for the short ss DNA chains with the number of bases less than 10, the switching of ss DNA cannot happen, and the critical temperature does not exist; iii) when the temperature increases, the electrostatic attractive interaction between ss DNA and charged nanoparticle surface becomes weak dramatically, and ss DNA chains will stretch if the electrostatic attractive interaction is insufficient to overcome the elastic energy of ss DNA and the electrostatic repulsion energy. These findings accord well with the experimental observations. It is predicted that the switching of ss DNA will not happen if the grafting densities are too high.
基金the Graduate Student Research Innovation Project of Chongqing(No.CYB22016)National Natural Science Foundation of China(Nos.52237010,52277135,51907011)。
文摘The surface charge accumulation on polymers often leads to surface flashover.Current solutions are mainly based on the introduction of inorganic fillers.The high-cost process and low compatibility remain formidable challenges.Moreover,existing researches on all-organic insulation focus on capturing electrons,contrary to alleviating charge accumulation.Here,an all-organic modification coating was prepared on polystyrene(PS)with the large-scale atmospheric-pressure plasma,which exhibits outperformed function in mitigating surface charge accumulation.The surface charge dissipation rate and surface conductivity are promoted by about 1.37 and 9.45 times,respectively.Simulation and experimental results show that this all-organic modification coating has a smaller electron affinity potential compared with PS.The decrease of electron affinity potential may result in accelerated surface charge decay of PS,which has never been involved in previous works.Moreover,this coating also has good reliability in a repeated surface flashover.This facile and large-scale approach brings up a novel idea for surface charge regulation and the manufacture of advanced dielectric polymers.
基金Project(51174229) supported by the National Natural Science Foundation of China
文摘The electrokinetic behavior and surface dissolution of serpentine mineral were studied through Zeta potential measurements, dissolution experiments and X-ray photoelectron spectroscopy. The results show that serpentine has an iso-electric point (IEP) of 11.9, which is higher than that of other phyllosilicate minerals. Dissolution experiments show that the hydroxyl is easy to dissolve with respect to the magnesium cations in the magnesium oxide octahedral sheet. As a result of hydroxyl dissolution, the magnesium ions are left on serpentine surface, which is responsible for serpentine surface charge. The removal of magnesium ions from serpentine surface by acid leaching results in a decrease of serpentine IEP. Therefore, it has been clearly established that the surface charge developed at the serpentine/aqueous electrical interface is a function of the serpentine surface incongruent dissolution.
文摘Foam stability tests were performed using sodium dodecyl sulfate(SDS)surfactant and SiO2 nanoparticles as foaming system at different asphaltene concentrations,and the half-life of CO_(2) foam was measured.The mechanism of foam stability reduction in the presence of asphaltene was analyzed by scanning electron microscope(SEM),UV adsorption spectrophotometric concentration measurement and Zeta potential measurement.When the mass ratio of synthetic oil to foam-formation suspension was 1:9 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 751 s to 239 s,and the half-life of SDS/silica-stabilized foams decreased from 912 s to 298 s.When the mass ratio of synthetic oil to foam-formation suspension was 2:8 and the asphaltene mass fraction increased from 0 to 15%,the half-life of SDS-stabilized foams decreased from 526 s to 171 s,and the half-life of SDS/silica-stabilized foams decreased from 660 s to 205 s.In addition,due to asphaltene-SDS/silica interaction in the aqueous phase,the absolute value of Zeta potential decreases,and the surface charges of particles reduce,leading to the reduction of repulsive forces between two interfaces of thin liquid film,which in turn,damages the foam stability.
基金This work was supported in part by a grant from Russian Scientific Foundation(Project No.17-75-30064).
文摘Up to now,the DNA molecule adsorbed on a surface was believed to always preserve its native structure.This belief implies a negligible contribution of lateral surface forces during and after DNA adsorption although their impact has never been elucidated.High-resolution atomic force microscopy was used to observe that stiff DNA molecules kinetically trapped on monomolecular films comprising one-dimensional periodically charged lamellar templates as a single layer or as a sublayer are oversaturated by sharp discontinuous kinks and can also be locally melted and supercoiled.We argue that kink/anti-kink pairs are induced by an overcritical lateral bending stress(>30 pNnm)inevitable for the highly anisotropic 1D-1D electrostatic interaction of DNA and underlying rows of positive surface charges.In addition,the unexpected kink-inducing mechanical instability in the shape of the template-directed DNA confined between the positively charged lamellar sides is observed indicating the strong impact of helicity.The previously reported anomalously low values of the persistence length of the surface-adsorbed DNA are explained by the impact of the surface-induced low-scale bending.The sites of the local melting and supercoiling are convincingly introduced as other lateral stress-induced structural DNA anomalies by establishing a link with DNA high-force mechanics.The results open up the study in the completely unexplored area of the principally anomalous kinetically trapped DNA surface conformations in which the DNA local mechanical response to the surface-induced spatially modulated lateral electrostatic stress is essentially nonlinear.The underlying rich and complex in-plane nonlinear physics acts at the nanoscale beyond the scope of applicability of the worm-like chain approximation.
文摘Speciation and fractionation of heavy metals in soil subsamples experimentally loaded with Pb, Cd, Cu and Zn in orthogonal design was investigated by sequential extraction, and operationally defined as water soluble and exchangeable(SE), weakly specific adsorbed(WSA), Fe and Mn oxides bound(OX) and organic bound(ORG). The results showed that fractions of heavy metals in the soil subsamples depended on their speciation. About 90% of Cd and 75% of Zn existed in soil subsamples in the SE fraction. Lead and Cu existed in soil subsamples as SE, WSA and OX fractions simultaneously, although SE was still the major fraction. Organic bound heavy metals were not clearly apparent in all the soil subsamples. The concentration of some heavy metal fractions in soil subsamples showed the good correlation with ionic impulsion of soil, especially for the SE fraction. Continuous saturation of soil subsamples with 0.20 mol/L NH 4Cl, which is the first step for determination of the negative surface charge of soil by the ion retention method, resulted in desorption of certain heavy metals from the soil. It was found that the percentage desorption of heavy metals from soil subsamples depended greatly on pH, the composition and original heavy metal content of the soil subsamples. However, most of the heavy metals in the soil subsamples were still be retained after multiple saturation. Compared with the parent soil, the negative surface charge of soil subsamples loaded with heavy metals did not show difference significantly from that of the parent one by statistical analysis. Heavy metals existed in the soil subsamples mainly as exchangeable and precipitated simultaneously.
基金Projects(41501350,41461071,31860170)supported by the National Natural Science Foundation of China
文摘A detailed understanding of the composition,buffering capacity,surface charge property,and metals leaching behavior of bauxite residue is the key to improved management,both in reducing the environmental impact and using the material as an industrial by-product for other applications.In this study,physical,chemical,and surface charge properties of bauxite residue derived from a combined process were investigated.Results indicated that the main alkaline solids in bauxite residue were katoite,sodalite,and calcite.These minerals also lead to a higher acid neutralizing capacity of bauxite residue.Acid neutralizing capacity(ANC)to pH 7.0 of this residue is about 0.9 mol H^+/kg solid.Meanwhile,the Fe-,Al-,and Si-containing minerals in bauxite residue resulted in an active surface;The isoelectric point(IEP)and point of zero charge(PZC)were 7.88 and 7.65,respectively.This also leads to a fact that most of the metals in bauxite residue were adsorbed by these surface charged solids,which makes the metals not readily move under natural or even moderately acidic conditions.The leaching behavior of metals as a function of pH indicated that the metals in bauxite residue present low release concentrations(pH>3).
基金Project(2005CB623701) supported by the Major State Basic Research Development Program of China
文摘The effects of the cell parameter and chemical composition on the surface charge properties of five kinds of different colour montmorillonites were studied. The results indicate that the surface isoelectric point(IEP) of the montmorillonite shows positive correlation with the mass fractions of Fe203 and K20, but it has little relation to the mass fractions of other chemical compositions. At around pH=6.8, the surface zeta potential of the montmorillonite shows the negative relationship with the mass fractions of Fe203 and MgO, but it does not linearly correlate to the mass fractions of other chemical compositions. Cell parameter(bo) of the montmorillonite expresses negative linear relationship with mass fractions of K2O and Na2O, so does cosinβ with mass fractions of SlOE and Fe2O3. And there is no specific relationship between bo and IEP of different montmorillonites, but there is positive correlation between cosinβ and IEP of different montmorillonite samples.
基金supported in part by National Natural Science Foundation of China(Nos.50937004,50777051)
文摘Surface charges greatly affect the discharge/flashover development process across an insulator. The relationship between surface charge distribution on insulating materials and measurement data based on Pockels technique is discussed, and an improved algorithm is built to calculate the real surface charge density from original data. In this algorithm, two-dimensional Fourier transform technique and Wiener filter are employed to reduce the amount of numerical calculation and improve the stability of computation, Moreover, this algorithm considers not only the influence of sample's thickness and permittivity, but also the impact of charges at different positions. The achievement of this calibration algorithm is demonstrated in details. Compared with traditional algorithms, the improved one supplies a better solution in the calibration of surface charge distribution on different samples with different thickness.
基金financially supported by the National Natural Science Foundation of China(Nos.51804213,51820105006,51474167,51674183,and 51674174)the China Scholarships Council(No.201906935041)。
文摘Surface charges and hydration are predominant properties of colloidal particles that govern colloidal stability in aqueous suspensions.These properties usually coexist and interact with each other.The correlation between the surface charge and hydration of minerals is summarized on the basis of innovative experimental,theoretical,and molecular dynamics simulation studies.The factors affecting the adsorption behavior of ions and water molecules,such as ion concentration,ion hydration radius and valence,and surface properties,are discussed.For example,the hydration and adsorption states completely differ between monovalent and divalent ions.For ions of the same valence,the effect of surface charge on the hydration force follows the Hofmeister adsorption series.Electrolyte concentration exerts a significant effect on the hydration force at high ion concentrations.Meanwhile,the ion correlations in high-concentration electrolyte systems become long range.The interfacial water structure largely depends on surface chemistry.The hydration layer between different surfaces shows large qualitative differences.
文摘Au Pd nanoalloys with tunable Pd concentrations have been synthesized and used as model catalysts. They have been directly imaged by high-angle annular dark-field scanning transmission electron microscopy and investigated by thorough analyses of their extended X-ray absorption fine structure, X-ray absorption near-edge structure, X-ray diffraction and X-ray photoelectron spectroscopy measurements. The bimetallic nanoparticles are embedded in a carbonaceous matrix and have almost an identical structure at the atomic level and the same electronic properties as Au Pd bulk alloys with the same compositions. The d-electron increase at surface Pd sites is determined by the Pd concentration of the alloy. Similarly, their activation entropy and catalytic activity for the hydrogenation of quinoline is related to the Pd concentration, with Au50 Pd50 the most active of the alloys investigated. An almost 11 times higher activity was achieved compared to a pure Pd catalyst. The experimentally measurable surface d charge at the Pd sites in the Au Pd was found to linearly correlate with the activation entropy and catalytic activity for the hydrogenation of quinoline. The alloy structure is stable, showing negligible metal segregation, dissolution-redeposition and aggregation during the hydrogenation process which involves strong adsorption.
基金supported by the Project for Natural Science Research of Jiangsu Higher Education Institutions(20KJA530001)the National Natural Science Foundation of China(22078147,21808107)the Natural Science Foundation of Jiangsu Province(BK20180163)and the Research Project of National Synthetic Biotechnology Innovation Centre(TSBICIP-KJGG-002-16).
文摘Tight ceramic ultrafiltration membranes have been proven to exhibit good rejection performance for reactive dye wastewater at high temperatures because of their high thermal and chemical resistance.However,the application of ceramic membranes for the treatment of cationic dye wastewater is challenging because of their surface charge.In this study,a ceramic membrane is modified by grafting aminosilane(KH-551)to enhance the positive charge of the membrane surface.The rejection performance of the charged modified ceramic membrane toward the methylene blue solution is significantly improved.The modification substance is bonded to the ceramic membrane surface via covalent bonding,which imparts good thermal stability.The modified ceramic membrane exhibits stable separation performance toward the methylene blue solution.Overall,this study provides valuable guidance for the adjustment of the ceramic membrane surface charge for treating industrial cationic dye wastewater.
基金supported by National Natural Science Foundation of China(No.51777076)the Self-topic Fund of State Key Laboratory of Alternate Electrical Power System with Renewable Energy Sources(No.LAPS2019-21)。
文摘In this paper,plasma fluorination is combined with plasma silicon deposition to achieve step gradient modification on an epoxy resin surface.The physicochemical characteristics of samples are investigated and the electrical performances measured.The obtained results show that compared with untreated and single treated samples,the samples treated by step gradient modification significantly improve the flashover performance.According to experiment and simulation,the mechanism explanations are summarized as follows.First,it is found that the step gradient conductivity can effectively optimize the electric field distribution of a needle-needle electrode.Then,step gradient modification suppresses the accumulation of surface charge at the triple junction and makes the charge distribution more uniform.Furthermore,it can accelerate the surface dissipation on a high electrical field region and control the dissipation rate on a low electrical field region.All these results can restrain surface discharge and increase the flashover voltage.The step gradient modification method proposed in this paper provides a new idea for improving the surface insulation performance.
文摘The relationship between iron oxides and surface charge characteristics in variable charge soils ( latosol and red earth ) was studied in following three ways. ( 1 ) Remove free iron oxides ( Fed ) and amorphous iron oxides ( Feo ) from the soils with sodium dithionite and acid ammonium oxalate solution respectively. ( 2 ) Add 2% glucose ( on the basis of air-dry soil weight ) to soils and incubate under submerged condition to activate iron oxides, and then the mixtures are dehydrated and air-dried to age iron oxides. ( 3 ) Precipitate various crystalline forms of iron oxides onto kaolinite. The results showed that free iron oxides ( Fed ) were the chief carrier of variable positive charges. Of which crystalline iron oxides ( Fed-Feo ) presented mainly as discrete particles in the soils and could only play a role of the carrier of positive charges, and did little influence on negative charges. Whereas the amorphous iron oxides ( Feo ) , which presented mainly as a coating with a large specific surface area, not only had positive charges, but also blocked the negative charge sites in soils. Submerged incubation activated iron oxides in the soils, and increased the amount of amorphous iron oxides and the degree of activation of iron oxide, which resulted in the increase of positive and negative charges of soils. Dehydration and air-dry aged iron oxides in soils and decreased the amount of amorphous iron oxides and the degree of activation of iron oxide, and also led to the decrease of positive and negative charges. Both the submerged incubation and the dehydration and air-dry had no significant influence on net charges. Precipitation of iron oxides onto kaolinite markedly increased positive charges and decreased negative charges. Amorphous iron oxide having a larger surface area contributed more positive charge sites and blocked more negative charge sites in kaolinite than crystalline goethite.
基金the financial support from National Natural Science Foundation of China (No. 51607128)Natural Science Foundation of Hubei Province (No. 2016CFB111)China Postdoctoral Science Foundation (No. 2016M602353)
文摘In an insulating system including solid and gas dielectrics, discharge type has a strong impact on charge accumulation at the interface between two dielectrics, and hence charge decay. In order to clarify the influence, a surface charge measurement system was constructed, and three types of discharge, i.e. surface discharge, and low intensity and high intensity coronas, were introduced to cause surface charge accumulation. The decay behavior of surface charges after different types of discharge was obtained at various temperatures. It was found that total surface charges monotonically decreased with time, and the decay rate became larger as temperature increased. However, after a surface discharge or a high intensity corona, surface charge density in the local area appeared to fluctuate during the decay process. Compared with this, the fluctuation of surface charge density was not observed after a low intensity corona. The mechanisms of surface charge accumulation and decay were analysed. Moreover, a microscopic physical model involving charge production, accumulation, and decay was proposed so that the experimental results could be explained.
基金supported by National Natural Science Foundation of China under contract No.11575194the National Basic Research Program of China(973 Project) under contract No.2014CB239505-3+2 种基金Natural Science Foundation of Hebei Province under contract No.E2015502081the Fundamental Research Funds for the Central Universities under contract No.2016ZZD07the Young Scholar of the Chang Jiang Scholars Program,Ministry of Education,China
文摘Non-thermal plasma surface modification for epoxy resin(EP)to improve the insulation properties has wide application prospects in gas insulated switchgear and gas insulatedtransmission line.In this paper,a pulsed Ar dual dielectrics atmospheric-pressure plasma jet(APPJ)was used for Si CxHyOzthin film deposition on EP samples.The film deposition was optimized by varying the treatment time while other parameters were kept at constants(treatment distance:10 mm,precursor flow rate:0.6 l min-(-1),maximum instantaneous power:3.08 k W and single pulse energy:0.18 m J).It was found that the maximum value of flashover voltages for negative and positive voltage were improved by 18%and 13%when the deposition time was3 min,respectively.The flashover voltage reduced as treatment time increased.Moreover,all the surface conductivity,surface charge dissipation rate and surface trap level distribution reached an optimal value when thin film deposition time was 3 min.Other measurements,such as atomic force microscopy and scanning electron microscope for EP surface morphology,Fourier transform infrared spectroscopy and x-ray photoelectron spectroscopy for EP surface compositions,optical emission spectra for APPJ deposition process were carried out to better understand the deposition processes and mechanisms.The results indicated that the original organic groups(C–H,C–C,C=O,C=C)were gradually replaced by the Si containing inorganic groups(Si–O–Si and Si–OH).The reduction of C=O in ester group and C=C in p-substituted benzene of the EP samples might be responsible for shallowing the trap level and then enhancing the flashover voltage.However,when the plasma treatment time was longer than 3 min,the significant increase of the surface roughness might increase the trap level depth and then deteriorate the flashover performance.