Irradiation protection of the nonlinear optical devices used in the spacecraft and next generation active laser system must be solved. The first problem was to find the irradiation damage mechanism of the nonlinear ma...Irradiation protection of the nonlinear optical devices used in the spacecraft and next generation active laser system must be solved. The first problem was to find the irradiation damage mechanism of the nonlinear materials. In this paper the irradiation electronic field originating from high speed charged particle beams was discussed. The calculating model of the electronic field, based on the relativistic mechanics and electro-magnetic theory, was founded. The common characters of the irradiation electronic field were predicted and the fields of α ray and β ray were calculated by means of our model. The simulating results showed that the intensity of the electric field increased with the energy or the intensity of the beam. The results also showed that the field change trend of α ray and β ray was similar, but the field value was quite different. When the beam intensity I = 100 μA and the beam energy εm = 500 Mev, the electronic field values were about 3.5 × 107 v/m for α ray and 2.4 × 1011 v/m for β ray.展开更多
By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser h...By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.展开更多
This paper presents the formalism for absorbed dose determination to Aluminum in high-energy electron beams using Rhodotron accelerator. Depth dose curve for Aluminum at electron energy of 10 MeV was calculated. The c...This paper presents the formalism for absorbed dose determination to Aluminum in high-energy electron beams using Rhodotron accelerator. Depth dose curve for Aluminum at electron energy of 10 MeV was calculated. The calculated curve in the model as a function of the depth is compared to the experimental. The agreement of the final results remained well within the expected acceptable range. The calculated values of dose-to-Aluminum are completely fit with the measured values in the range of 0.07% for electron energy of 10 MeV.展开更多
In this paper,the effects of rare earth oxides on the micro structure and mechanical properties of nickelbased superalloys prepared by high-energy beam processing technology were critically studied.The focus is on the...In this paper,the effects of rare earth oxides on the micro structure and mechanical properties of nickelbased superalloys prepared by high-energy beam processing technology were critically studied.The focus is on the optimal amount of rare earth oxides that can produce ideal results.Special attention was paid to their main strengthening mechanisms,including solid solution strengthening mainly in the form of solid solution dissolved in the nickel-based alloy and improving the microstructure of the alloy by grain refinement or fine grain strengthening produced by homogenizing the distribution phase.Y_(2)O_(3),La_(2)O_(3) and CeO_(2) rare earth oxides can also improve the fluidity of the alloy molten pool and reduce the segregation of alloying elements.These advantages can significantly improve the mechanical properties of the alloy.Thereafter,this paper outlines the future research directions of rare earth oxides,aiming to expand their application potential.展开更多
The samples consisting of 100nm Al or Ag film on optical glass substrate were irradiated by a beam of Xe 5×10<sup>15</sup> to 2×10<sup>16</sup> cm<sup>-2</sup> with energy...The samples consisting of 100nm Al or Ag film on optical glass substrate were irradiated by a beam of Xe 5×10<sup>15</sup> to 2×10<sup>16</sup> cm<sup>-2</sup> with energy 320 keV. The adhesion of films on substrates was tested by Xe<sup>+</sup> irradiation. Optical character was measured by spectrophotometer. The ion mixing amount was measured by RBS. The results showed that after ion irradiating the adhesion of the film on the glass is enhanced. The adherent strength is greater than 10 kg/cm<sup>2</sup>. The thermal stability of the films is good. The irradiated film is more optically efficient, the surface is smooth and rendered more corrosion resistance. The mechanism of the film adhesion was discussed.展开更多
A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper.A shock wave is produced when a heavy ion beam heats the gol...A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper.A shock wave is produced when a heavy ion beam heats the gold along the direction of the magnetic field.The density peak of the shock wave increases with the increase in time and it propagates in the-r direction in the cylindrical tube.It seems that this wave is the supermagnetosonic wave.It is found that the Mach number M is between 6.96 and 19.19.The density peak of the shock wave increases as the intensity of the heavy ion beam increases.Furthermore,the density peak of the shock wave increases as the external magnetic field increases.展开更多
The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the ...The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the electron beam from the Linac and increases its energy to the value required for the storage ring.The full-energy beam could be injected to the storage ring directly or after“high-energy accumulation.”On November 17,2023,the key booster parameters successfully reached their corresponding target values.These milestone results were achieved based on numerous contributions,including nearly a decade of physical design,years of equipment development and installation,and months of beam commissioning.As measured at the extraction energy of 6 GeV,the averaged beam current and emittance reached 8.57 mA with 5 bunches and 30.37 nm rad with a single-bunch charge of 5.58 nC,compared with the corresponding target values of 6.6 mA and 35 nm rad,respectively.This paper presents the physical design,equipment development,installation,and commissioning process of the HEPS booster.展开更多
Purpose The physics design of the High Energy Photon Source(HEPS)was finished after many times of iteration.Hereby,the typical equilibrium electron beam parameters corresponding to the proposed two baseline operation ...Purpose The physics design of the High Energy Photon Source(HEPS)was finished after many times of iteration.Hereby,the typical equilibrium electron beam parameters corresponding to the proposed two baseline operation modes in the baseline design of HEPS are presented.Methods To compute the equilibrium parameters of the electron beam,the lattice parameters,RF parameters,and the parameters of the insertion devices(IDs)were determined first.Furthermore,it is more precise to use the full-current electron beam parameters in the estimations of the performance of the synchrotron light.Therefore,not only the single-particle dynamics but also the current-dependent collective effects need to be considered in the computations of the full-current,equilibrium parameters of the electron beam.Both analytic computations and multi-particle tracking simulations were carried out.Results The full-current,equilibrium parameters of the electron beams in the HEPS storage ring are presented in this paper.Moreover,the main beam parameters in the injector(the booster and the LINAC),corresponding to the two baseline operation modes of the storage ring,are also presented.Conclusion The typical electron beam parameters corresponding to the two baseline operation modes are given in detail in this paper.展开更多
文摘Irradiation protection of the nonlinear optical devices used in the spacecraft and next generation active laser system must be solved. The first problem was to find the irradiation damage mechanism of the nonlinear materials. In this paper the irradiation electronic field originating from high speed charged particle beams was discussed. The calculating model of the electronic field, based on the relativistic mechanics and electro-magnetic theory, was founded. The common characters of the irradiation electronic field were predicted and the fields of α ray and β ray were calculated by means of our model. The simulating results showed that the intensity of the electric field increased with the energy or the intensity of the beam. The results also showed that the field change trend of α ray and β ray was similar, but the field value was quite different. When the beam intensity I = 100 μA and the beam energy εm = 500 Mev, the electronic field values were about 3.5 × 107 v/m for α ray and 2.4 × 1011 v/m for β ray.
基金financially supported by the National Natural Science Foundation of China(Nos.11475260,11305264,11622547,91230205,and 11474360)the National Basic Research Program of China(No.2013CBA01504)the Research Project of NUDT(No.JC14-02-02)
文摘By using a two-dimensional particle-in-cell simulation,we demonstrate a scheme for highenergy-density electron beam generation by irradiating an ultra intense laser pulse onto an aluminum(Al) target.With the laser having a peak intensity of 4×10^23W cm^-2,a high quality electron beam with a maximum density of 117 nc and a kinetic energy density up to8.79×10^18J m^-3 is generated.The temperature of the electron beam can be 416 Me V,and the beam divergence is only 7.25°.As the laser peak intensity increases(e.g.,1024 W cm^-2),both the beam energy density(3.56×10^19J m^-3) and the temperature(545 Me V) are increased,and the beam collimation is well controlled.The maximum density of the electron beam can even reach 180 nc.Such beams should have potential applications in the areas of antiparticle generation,laboratory astrophysics,etc.
文摘This paper presents the formalism for absorbed dose determination to Aluminum in high-energy electron beams using Rhodotron accelerator. Depth dose curve for Aluminum at electron energy of 10 MeV was calculated. The calculated curve in the model as a function of the depth is compared to the experimental. The agreement of the final results remained well within the expected acceptable range. The calculated values of dose-to-Aluminum are completely fit with the measured values in the range of 0.07% for electron energy of 10 MeV.
基金Project supported by China Postdoctoral Science Foundation(2021M7010380)the Natural Science Foundation of Shanghai (20ZR1422700)Class Ⅲ Peak Discipline of Shanghai-Materials Science and Engineering (High-Energy Beam Intelligent Processing and Green Manufacturing)。
文摘In this paper,the effects of rare earth oxides on the micro structure and mechanical properties of nickelbased superalloys prepared by high-energy beam processing technology were critically studied.The focus is on the optimal amount of rare earth oxides that can produce ideal results.Special attention was paid to their main strengthening mechanisms,including solid solution strengthening mainly in the form of solid solution dissolved in the nickel-based alloy and improving the microstructure of the alloy by grain refinement or fine grain strengthening produced by homogenizing the distribution phase.Y_(2)O_(3),La_(2)O_(3) and CeO_(2) rare earth oxides can also improve the fluidity of the alloy molten pool and reduce the segregation of alloying elements.These advantages can significantly improve the mechanical properties of the alloy.Thereafter,this paper outlines the future research directions of rare earth oxides,aiming to expand their application potential.
文摘The samples consisting of 100nm Al or Ag film on optical glass substrate were irradiated by a beam of Xe 5×10<sup>15</sup> to 2×10<sup>16</sup> cm<sup>-2</sup> with energy 320 keV. The adhesion of films on substrates was tested by Xe<sup>+</sup> irradiation. Optical character was measured by spectrophotometer. The ion mixing amount was measured by RBS. The results showed that after ion irradiating the adhesion of the film on the glass is enhanced. The adherent strength is greater than 10 kg/cm<sup>2</sup>. The thermal stability of the films is good. The irradiated film is more optically efficient, the surface is smooth and rendered more corrosion resistance. The mechanism of the film adhesion was discussed.
基金supported by National Natural Science Foundation of China(Nos.11965019,42004131 and 42065005)。
文摘A magnetized cylindrical target composed of a gold tube filled with deuterium-tritium fuel plasma at low density is studied numerically in the present paper.A shock wave is produced when a heavy ion beam heats the gold along the direction of the magnetic field.The density peak of the shock wave increases with the increase in time and it propagates in the-r direction in the cylindrical tube.It seems that this wave is the supermagnetosonic wave.It is found that the Mach number M is between 6.96 and 19.19.The density peak of the shock wave increases as the intensity of the heavy ion beam increases.Furthermore,the density peak of the shock wave increases as the external magnetic field increases.
基金This work was supported by the National Natural Science Foundation of China(No.12005239).
文摘The high-energy photon source(HEPS)is the first fourth-generation synchrotron light source facility in China.The HEPS injector consists of a linear accelerator(Linac)and a full energy booster.The booster captures the electron beam from the Linac and increases its energy to the value required for the storage ring.The full-energy beam could be injected to the storage ring directly or after“high-energy accumulation.”On November 17,2023,the key booster parameters successfully reached their corresponding target values.These milestone results were achieved based on numerous contributions,including nearly a decade of physical design,years of equipment development and installation,and months of beam commissioning.As measured at the extraction energy of 6 GeV,the averaged beam current and emittance reached 8.57 mA with 5 bunches and 30.37 nm rad with a single-bunch charge of 5.58 nC,compared with the corresponding target values of 6.6 mA and 35 nm rad,respectively.This paper presents the physical design,equipment development,installation,and commissioning process of the HEPS booster.
基金supported by the High Energy Photon Source(HEPS),a major national science and technology infrastructurethe National Natural Science Foundation of China(No.11922512).
文摘Purpose The physics design of the High Energy Photon Source(HEPS)was finished after many times of iteration.Hereby,the typical equilibrium electron beam parameters corresponding to the proposed two baseline operation modes in the baseline design of HEPS are presented.Methods To compute the equilibrium parameters of the electron beam,the lattice parameters,RF parameters,and the parameters of the insertion devices(IDs)were determined first.Furthermore,it is more precise to use the full-current electron beam parameters in the estimations of the performance of the synchrotron light.Therefore,not only the single-particle dynamics but also the current-dependent collective effects need to be considered in the computations of the full-current,equilibrium parameters of the electron beam.Both analytic computations and multi-particle tracking simulations were carried out.Results The full-current,equilibrium parameters of the electron beams in the HEPS storage ring are presented in this paper.Moreover,the main beam parameters in the injector(the booster and the LINAC),corresponding to the two baseline operation modes of the storage ring,are also presented.Conclusion The typical electron beam parameters corresponding to the two baseline operation modes are given in detail in this paper.