It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to...It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.展开更多
We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical struc...We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure,especially investigate its output performance in vibration harvesting and ability to generate charges.By establishing the theoretical model for each of vibration and circuit,the numerical results of voltage and power output are obtained.By fabricating the prototype of this harvester,the quality of the sputtered film is explored.Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions,where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation,and the power output of the closed-circuit mode is relevant to resistance.Experimental findings show good agreement with the theoretical ones,in the output tendency.It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations.Furthermore,a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩis achieved by using an improved synchronous electric charge extraction circuit.The result is not only more than three times the power output of classic circuit,but also can broaden the resistance to a large range of 5 kΩunder an identical maximum value of power output.In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film.Furthermore,it may contribute to a novel energy harvesting circuit with high output performance.展开更多
A switched-current sample-and-hold circuit with low charge injection was proposed. To obtain low noise and charge injection, the zero-voltage switching was used to remove the signal-dependent charge injection, and the...A switched-current sample-and-hold circuit with low charge injection was proposed. To obtain low noise and charge injection, the zero-voltage switching was used to remove the signal-dependent charge injection, and the signal-independent charge injection was reduced by removing the feed-through voltage from the input port of the memory transistor directly. This current sample-and-hold circuit was implemented using CMOS 180 nm 1.8 V technology. For a 0.8 MHz sinusoidal signal input, the simulated signal-to-noise and distortion ratio and total harmonic distortion were improved from 53.74 dB and -51.24 dB to 56.53 dB and -54.36 dB at the sampling rate of 20 MHz respectively, with accuracy of 9.01 bit and power consumption of 0.44 mW.展开更多
Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: appr...Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: approximate 25 times, the accuracy of DC output voltage: ±5%, manual control and automatic control.展开更多
MPI(multishot pellet injector) was imported from Russia about ten years ago. During the year's operation in HL-1M, most electrical equipments were repaired. Since the components are non-standard, so it is difficult...MPI(multishot pellet injector) was imported from Russia about ten years ago. During the year's operation in HL-1M, most electrical equipments were repaired. Since the components are non-standard, so it is difficult to maintain. To fueling experiment meet the requirement of in HL-2A. The power supplies of fast valve and a programmable controller for shooting pellets were developed.展开更多
A high efficiency charge pump circuit is designed and realized. The charge transfer switch is biased by the additional capacitor and transistor to eliminate the influence of the threshold voltage. Moreover, the bulk o...A high efficiency charge pump circuit is designed and realized. The charge transfer switch is biased by the additional capacitor and transistor to eliminate the influence of the threshold voltage. Moreover, the bulk of the switch transistor is dynamically biased so that the threshold voltage gets lower when it is turned on during charge transfer and gets higher when it is turned off. As a result, the efficiency of the charge pump circuit can be improved. A test chip has been implemented in a 0.18μm 3.3 V standard CMOS process. The measured output voltage of the eight-pumpingstage charge pump is 9.8 V with each pumping capacitor of 0.5 pF at an output current of 0.18 μA, when the clock frequency is 780 kHz and the supply voltage is 2 V. The charge pump and the clock driver consume a total current of 2.9 μA from the power supply. This circuit is suitable for low power applications.展开更多
A low power 10-bit 125-MSPS charge-domain(CD) pipelined analog-to-digital converter(ADC) based on MOS bucket-brigade devices(BBDs) is presented.A PVT insensitive boosted charge transfer(BCT) that is able to reject the...A low power 10-bit 125-MSPS charge-domain(CD) pipelined analog-to-digital converter(ADC) based on MOS bucket-brigade devices(BBDs) is presented.A PVT insensitive boosted charge transfer(BCT) that is able to reject the charge error induced by PVT variations is proposed.With the proposed BCT,the common mode charge control circuit can be eliminated in the CD pipelined ADC and the system complexity is reduced remarkably.The prototype ADC based on the proposed BCT is realized in a 0.18μm CMOS process,with power consumption of only 27 mW at 1.8-V supply and active die area of 1.04 mm^2.The prototype ADC achieves a spurious free dynamic range(SFDR) of 67.7 dB,a signal-to-noise ratio(SNDR) of 57.3 dB,and an effective number of bits(ENOB) of 9.0 for a 3.79 MHz input at full sampling rate.The measured differential nonlinearity(DNL) and integral nonlinearity (INL) are +0.5/-0.3 LSB and +0.7/-0.55 LSB,respectively.展开更多
A low power 10-bit 250 MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) is introduced. The ADC is implemented in MOS bucket-brigade devices (BBDs) based CD pipelined architecture. A replica co...A low power 10-bit 250 MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) is introduced. The ADC is implemented in MOS bucket-brigade devices (BBDs) based CD pipelined architecture. A replica controlled boosted charge transfer (BCT) circuit is introduced to reject the influence of PVT variations on the charge transfer process. Based on replica controlled BCT, the CD pipelined ADC is designed and realized in a 1P6M 0.18μm CMOS process. The ADC achieves an SFDR of 64.4 dB, an SNDR of 56.9 dB and an ENOB of 9.2 for a 9.9 MHz input; and an SFDR of 63.1 dB, an SNR of 55.2 dB, an SNDR of 54.5 dB and an ENOB of 8.7 for a 220.5 MHz input at full sampling rate. The DNL is +0.5/- 0.55 LSB and INL is +0.8/- 0.85 LSB. The power consumption of the prototype ADC is only 45 mW at 1.8 V supply and it occupies an active die area of 1.56 mm2.展开更多
This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit ...This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage(V_(th)) MOSFET and the charge transfer switch(CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48μW and a higher pumping efficiency(83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.展开更多
A charge pump design is presented to operate at 10 kHz with 100 μA in a liquid crystal display (LCD) driver for cell phone. Optimal channel widths are designed by estimating the power consumption of the Fibonacci-lik...A charge pump design is presented to operate at 10 kHz with 100 μA in a liquid crystal display (LCD) driver for cell phone. Optimal channel widths are designed by estimating the power consumption of the Fibonacci-like charge pump. An optimal frequency is a compromise between the rise time and the dynamic power dissipation. The optimization of the two-phase nonoverlapping clock generator circuit improves the efficiency. Simulation results based on 1.2 μm complementary metal-oxide-semiconductor (CMOS) technology parameters verify the efficiency of the design.展开更多
For 3D vertical NAND flash memory, the charge pump output load is much larger than that of the planar NAND, resulting in the performance degradation of the conventional Dickson charge pump. Therefore, a novel all PMOS...For 3D vertical NAND flash memory, the charge pump output load is much larger than that of the planar NAND, resulting in the performance degradation of the conventional Dickson charge pump. Therefore, a novel all PMOS charge pump with high voltage boosting efficiency, large driving capability and high power efficiency for 3D V-NAND has been proposed. In this circuit, the Pellieoni structure is used to enhance the driving capability, two auxiliary substrate bias PMOS transistors are added to mitigate the body effect, and the degradation of the output voltage and boost efficiency caused by the threshold voltage drop is eliminated by dynamic gate control structure. Simulated results show that the proposed charge pump circuit can achieve the maximum boost efficiency of 86% and power efficiency of 50%. The output voltage of the proposed 9 stages charge pump can exceed 2 V under 2 MHz clock frequency in 2X nm 3D V-NAND technology. Our results provide guidance for the peripheral circuit design of high density 3D V-NAND integration.展开更多
文摘It is the purpose of the present paper to convert hydraulic energy to electric energy and saves both the pressure and electrical energy for re - use during the next system upstroke using two secondary units coupled to induction motor to drive cylinder loads. During upstroke operation, the variable pump/motor (P/M) driven by both electric motor and the second (P/M) works as hydraulic pump and output flow to the cylinders which drive the load. During load deceleration, the cylinders work as pump while the operation of the two secondary units are reversed, the variable (P/M) works as a motor generating a torque with the electric motor to drive the other (P/M) which transforms mechanical energy to hydraulic energy that is saved in the accumulator. When the energy storage capacity of the accumulator is attained as the operation continues, energy storage to the accumulator is thermostatically stopped while the induction motor begins to work as a generator and generates electricity that is stored in the power distribution unit. Simulations were performed using a limited PT2 Block, i.e. 2nd-order transfer function with limitation of slope and signal output to determine suitable velocity of the cylinder which will match high performance and system stability. A mathematical model suited to the simulation of the hydraulic accumulator both in an open-or close-loop system is presented. The quest for improvement of lower energy capacity storage, saving and re-utilization of the conventional accumulator resulting in the short cycle time usage of hydraulic accumulators both in domestic and industrial purposes necessitates this research. The outcome of the research appears to be very efficient for generating fluctuation free electricity, power quality and reliability, energy saving/reutilization and system noise reduction.
文摘We demonstrate a piezoelectric vibration energy harvester with the ZnO piezoelectric film and an improved synchronous electric charge extraction energy harvesting circuit on the basis of the beam-type mechanical structure,especially investigate its output performance in vibration harvesting and ability to generate charges.By establishing the theoretical model for each of vibration and circuit,the numerical results of voltage and power output are obtained.By fabricating the prototype of this harvester,the quality of the sputtered film is explored.Theoretical and experimental analyses are conducted in open-circuit and closed-circuit conditions,where the open-circuit mode refers to the voltage output in relation to the ZnO film and external excitation,and the power output of the closed-circuit mode is relevant to resistance.Experimental findings show good agreement with the theoretical ones,in the output tendency.It is observed that the properties of ZnO film achieve regularly direct proportion to output performance under different excitations.Furthermore,a maximum experimental power output of 4.5 mW in a resistance range of 3 kΩ-8 kΩis achieved by using an improved synchronous electric charge extraction circuit.The result is not only more than three times the power output of classic circuit,but also can broaden the resistance to a large range of 5 kΩunder an identical maximum value of power output.In this study we demonstrate the fundamental mechanism of piezoelectric materials under multiple conditions and take an example to show the methods of fabricating and testing the ZnO film.Furthermore,it may contribute to a novel energy harvesting circuit with high output performance.
基金Supported by National Natural Science Foundation of China(No.61036004 and No.61076024)
文摘A switched-current sample-and-hold circuit with low charge injection was proposed. To obtain low noise and charge injection, the zero-voltage switching was used to remove the signal-dependent charge injection, and the signal-independent charge injection was reduced by removing the feed-through voltage from the input port of the memory transistor directly. This current sample-and-hold circuit was implemented using CMOS 180 nm 1.8 V technology. For a 0.8 MHz sinusoidal signal input, the simulated signal-to-noise and distortion ratio and total harmonic distortion were improved from 53.74 dB and -51.24 dB to 56.53 dB and -54.36 dB at the sampling rate of 20 MHz respectively, with accuracy of 9.01 bit and power consumption of 0.44 mW.
文摘Parameters of the power source used to control PV-10 piezoelectric crystal valve are following DC output voltage: 0 - 120 V, continuously controllable, linear enlargement factor of input direct current voltage: approximate 25 times, the accuracy of DC output voltage: ±5%, manual control and automatic control.
文摘MPI(multishot pellet injector) was imported from Russia about ten years ago. During the year's operation in HL-1M, most electrical equipments were repaired. Since the components are non-standard, so it is difficult to maintain. To fueling experiment meet the requirement of in HL-2A. The power supplies of fast valve and a programmable controller for shooting pellets were developed.
基金supported by the Chinese National High-Tech Research and Development Program(No.2006AA04A108)the National Natural Science Foundation of China(No.2008AA010703).
文摘A high efficiency charge pump circuit is designed and realized. The charge transfer switch is biased by the additional capacitor and transistor to eliminate the influence of the threshold voltage. Moreover, the bulk of the switch transistor is dynamically biased so that the threshold voltage gets lower when it is turned on during charge transfer and gets higher when it is turned off. As a result, the efficiency of the charge pump circuit can be improved. A test chip has been implemented in a 0.18μm 3.3 V standard CMOS process. The measured output voltage of the eight-pumpingstage charge pump is 9.8 V with each pumping capacitor of 0.5 pF at an output current of 0.18 μA, when the clock frequency is 780 kHz and the supply voltage is 2 V. The charge pump and the clock driver consume a total current of 2.9 μA from the power supply. This circuit is suitable for low power applications.
基金supported by the National Natural Science Foundation of China(No.61106027)the 333 Talent Project of Jiangsu Province, China(No.BRA2011115)
文摘A low power 10-bit 125-MSPS charge-domain(CD) pipelined analog-to-digital converter(ADC) based on MOS bucket-brigade devices(BBDs) is presented.A PVT insensitive boosted charge transfer(BCT) that is able to reject the charge error induced by PVT variations is proposed.With the proposed BCT,the common mode charge control circuit can be eliminated in the CD pipelined ADC and the system complexity is reduced remarkably.The prototype ADC based on the proposed BCT is realized in a 0.18μm CMOS process,with power consumption of only 27 mW at 1.8-V supply and active die area of 1.04 mm^2.The prototype ADC achieves a spurious free dynamic range(SFDR) of 67.7 dB,a signal-to-noise ratio(SNDR) of 57.3 dB,and an effective number of bits(ENOB) of 9.0 for a 3.79 MHz input at full sampling rate.The measured differential nonlinearity(DNL) and integral nonlinearity (INL) are +0.5/-0.3 LSB and +0.7/-0.55 LSB,respectively.
基金Project supported by the National Natural Science Foundation of China(No.61106027)
文摘A low power 10-bit 250 MSPS charge-domain (CD) pipelined analog-to-digital converter (ADC) is introduced. The ADC is implemented in MOS bucket-brigade devices (BBDs) based CD pipelined architecture. A replica controlled boosted charge transfer (BCT) circuit is introduced to reject the influence of PVT variations on the charge transfer process. Based on replica controlled BCT, the CD pipelined ADC is designed and realized in a 1P6M 0.18μm CMOS process. The ADC achieves an SFDR of 64.4 dB, an SNDR of 56.9 dB and an ENOB of 9.2 for a 9.9 MHz input; and an SFDR of 63.1 dB, an SNR of 55.2 dB, an SNDR of 54.5 dB and an ENOB of 8.7 for a 220.5 MHz input at full sampling rate. The DNL is +0.5/- 0.55 LSB and INL is +0.8/- 0.85 LSB. The power consumption of the prototype ADC is only 45 mW at 1.8 V supply and it occupies an active die area of 1.56 mm2.
基金supported by the National Natural Science Foundation of China(No.61072010)
文摘This paper presents a low power and high efficiency high voltage generator circuit embedded in electrically erasable programmable read-only memory(EEPROM).The low power is minimized by a capacitance divider circuit and a regulator circuit using the controlling clock switch technique.The high efficiency is dependent on the zero threshold voltage(V_(th)) MOSFET and the charge transfer switch(CTS) charge pump.The proposed high voltage generator circuit has been implemented in a 0.35μm EEPROM CMOS process.Measured results show that the proposed high voltage generator circuit has a low power consumption of about 150.48μW and a higher pumping efficiency(83.3%) than previously reported circuits.This high voltage generator circuit can also be widely used in low-power flash devices due to its high efficiency and low power dissipation.
文摘A charge pump design is presented to operate at 10 kHz with 100 μA in a liquid crystal display (LCD) driver for cell phone. Optimal channel widths are designed by estimating the power consumption of the Fibonacci-like charge pump. An optimal frequency is a compromise between the rise time and the dynamic power dissipation. The optimization of the two-phase nonoverlapping clock generator circuit improves the efficiency. Simulation results based on 1.2 μm complementary metal-oxide-semiconductor (CMOS) technology parameters verify the efficiency of the design.
文摘For 3D vertical NAND flash memory, the charge pump output load is much larger than that of the planar NAND, resulting in the performance degradation of the conventional Dickson charge pump. Therefore, a novel all PMOS charge pump with high voltage boosting efficiency, large driving capability and high power efficiency for 3D V-NAND has been proposed. In this circuit, the Pellieoni structure is used to enhance the driving capability, two auxiliary substrate bias PMOS transistors are added to mitigate the body effect, and the degradation of the output voltage and boost efficiency caused by the threshold voltage drop is eliminated by dynamic gate control structure. Simulated results show that the proposed charge pump circuit can achieve the maximum boost efficiency of 86% and power efficiency of 50%. The output voltage of the proposed 9 stages charge pump can exceed 2 V under 2 MHz clock frequency in 2X nm 3D V-NAND technology. Our results provide guidance for the peripheral circuit design of high density 3D V-NAND integration.